Problem Set 5
Quantum Field Theory and Many Body Physics (SoSe2018)

Due: Thursday, May 24, 2018 before the beginning of the class

In this problem set, we study various examples and aspects of linear response. We first consider a very
simple linear response problem for the quantum harmonic oscillator. Then, we prove important general
properties of response functions, including the Kramers-Kronig relations which are a direct consequence of
causality and the associated analytic properties of the response function in the complex frequency plane.
Finally, we consider the polarization operator, a very important response function in the theory of metals.
We first compute it for free electrons and subsequently consider interacting electrons in the random-phase
approximation.

Problem 1: Polarizability of a harmonic oscillator (5-+5+5+5-+5 points)

In this problem, we consider a very simple example for a response function, namely the polarizability x
of a charge e bound in a harmonic oscillator potential. The polarizability is defined through

d=x¢&, (1)

where d is the dipole moment, d = ex, and £ the applied electric field. The Hamiltonian of the system is

P 1
H= om + §mw§a}2 —ex€. (2)
(a) Use first order perturbation theory in a time-independent electric field £ for the eigenstate |¢,) of H

to derive the static polarizability x. Specifically, according to first-order perturbation theory,
(m| — e€x|n)
[Yn) = |n) + Z |m>ﬁ, (3)
n m
m#n

where |n) denotes the eigenstates of the unperturbed harmonic oscillator (£ = 0) with eigenenergies
E, = hwo(n + %) Use this expression to compute the thermal expectation value

e"ﬂl;n

4= g tnleals) (4)

to linear order in the applied field €. (Here, the partition function is Z =3 > e BFn) You may find it
useful that = couples only neighboring harmonic oscillator eigenstates with matrix elements (prove!)

gOSC
(n+1|z|n) = \@\/n—l—l (5)

gOSC
(n —1|z[n) = \/5\/5 (6)

= h/mwy. Eventually, you can perform the sum over m in the

2

in terms of the oscillator length £

expression for d and find x = meQ.
0

(b) Now define a dynamic polarizability as the response to a time-dependent electric field £(t) through

d(t) = /Oo dt’ x(t, (). (7)

o0



Use the general Kubo formula derived in class to obtain the Kubo formula

ie?
X(t,1) = =0t = ){[(t), 2(#)]) (8)

for the polarizability. Set up and solve the Heisenberg equation of motion for z(t) (for the unperturbed
harmonic oscillator!) to find

x(t) = x coswot + sin wot. 9)

mwo
Use this to evaluate the correlation function explicitly and find

2

X(t, ) = m%oe(t — ') sin(wo(t — t)). (10)

(c) Fourier transform x(t,t’) to the time domain and show that

e?/m
X(w) = my (11)

where 7 denotes a positive infinitesimal. Explain how this is related to the result in (a).

(d) Compute the thermal Green’s function
G(r,7") = (Tra(r)2(")), (12)

from the path integral for £ = 0, giving explicit results in the (Matsubara) frequency domain. Show that
the retarded polarizability can be obtained from G(if2) by analytical continuation.

(e) Compute the corresponding spectral function p(w).

Problem 2: General properties of response functions (54+5+5+5+5 points)

In this problem we want to discuss some important general properties of response functions D(¢,t') in
frequency representation. Consider a retarded Green’s functions for bosonic operators, A and B with
Lehmann representation

and spectral representation ; ,
D)= [ ot (14
in terms of the spectral function
p() = 5 S (e — &) (| Al | Blm) 2 (B — By — ). (15)
(a) Use the Lehmann representation to show that
[Dap(W)]" = D4t pt (—w) (16)
Specifically, this implies for hermitian operators A and B that
ReD(w) = ReD(—w), (17)
mD(w) = —ImD(—w), (1)
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Figure 1: Integration contour

i.e.,, ReD(w) is even in w, Im D(w) is odd.
(b) Show that the spectral function is real for the important case B = A! (with A not necessarily a
Hermitian operator).

(¢) Prove the useful and frequently used identity (for infinitesimal 7 > 0)
1 1
e =P indla), (19)

where P denotes the principal value and §(z) is the Dirac d-function. [Hint: The principal value can be
represented as

flx) x
P/da:x —%1_% dx f(x)m, (20)

and

2 Z 2 o () (21)

is a representation of the Dirac d-dunction (why?).]
(d) Use the identity in (c) to show that for B = At

Tm D(w) = ~ (), (22)
and thus 4 TmD(w)
D) = - [ T (23)

(e) Finally, we want to discuss a general relation between the real and imaginary parts of the response
function D(w) which is a direct consequence of causality and referred to as Kramers-Kronig relation. The
Lehmann representation implies that D(w) is an analytic function in the upper half of the complex w-plane.

[ — o)

c2miz —w+

Explain why

with the contour C specified in Fig. 1. Using that the integral over the semicircle vanishes when pushed
to infinity, derive the Kramers-Kronig relation

79/ = (25)

Specifically, this relation implies that

ReD(w) = —P / d:Ih;lDw), (26)
mD(w) = P / d;” Rij). (27)
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Check that these relations work out for the response function in Eq. (11) above.

Problem 3: Polarization operator (10+5+10 points)

A very important response function describes the density response of a Fermi gas (e.g., non-interacting
electrons) with chemical potential p to an applied electric potential ¢(r,t),

dp(r,t) = —eQ/dr'dt’ Ho(rt, 't (r', t). (28)
Since the system is translationally invariant in both space and time, we have

p(q,w) = —e’Tlo(q,w)d(q, w). (29)

IIp is often referred to as the polarization operator. It can be computed by applying the Lehmann
representation to a single electron system with occupation probability

1
k= eBler—w) 1 (30)
of the momentum states |k). The charge density is
p(r) = ed(r — ), (31)
and the electric potential couples to the electrons through
Hin = 0(0) = [ dr pe)o). (32)

Correspondingly, we obtain in Fourier representation p(q) = e~*9F and H;,; = % Zq p(—q)o(q). Using
this in the Lehmann representation for the Kubo formula for Iy, we find (with e, = k?/2m)

11 (klp(q)[K) (K'|p(—q) k)
II =—== — Ny . 33
o(q,) e2v§("k e W+ ex — e +1in (33)
Please make sure that you understand the logic leading to this expression.
(a) Evaluate the matrix elements (k|p(q)|k’) and show that
1 Nk — Nk
HO(q7 CU) = +d (34)

v ” W+ €x — €xyq +1in

(b) Evaluate both Rellp(q,w) and Imlly(q,w) explicitly in 3d by performing the integration over k
(% k= [ (SSTI)‘S) [Hint: See, e.g. the book by Fetter and Walecka, p158ff, if you need help.]

(c) Imagine now a Fermi system of charged particles, e.g. electrons. Let us also assume that the average
electronic charge density is compensated by a uniform and rigid background of opposite charge (represent-
ing the ion cores in a solid). Then, the change in the electronic charge density dp(rt) is itself producing
an induced electric potential, ¢inq(r,t),

dp(r',t)
gbind(r,t) = /dr’ |I‘ — I‘/| . (35)
The actual induced charge density is thus a response to the total potential

Gtot (1, 1) = &(r,t) + Ping(r, t), (36)



which is the sum of the external potential ¢(r,t) and the induced potential. Thus,

op(g,w) = —¢” / dr'dt/ o (rt, ') (¢(r, ') + ina (', 1)) - (37)

Note that this is an approximation (called RPA or random phase approximation for historical reasons)
in that we neglect the effects of the Coulomb interaction on Ilp. Show that this equation can be Fourier
transformed to give

p(q,w) = —€’To(q,w) (¢(q, w) + ina(q, w)) - (38)

Moreover, show that

Gna(a,) = o(@)pla,w), (39)

with v(q) = 4252. Defining a response function II(q,w) describing the density response of the interacting
Fermi system to the externally applied potential ¢(q,w), i.e.,

5p(q,w) = —*T(q, w)p(q,w), (40)

show that

_ HU(qaw)
M) = T ()T (a ) @)

Use this to find ]

B 1+ ’U(Q)Ho(q, w)
Compute the total potential in real space within the Thomas-Fermi approximation (Ily(q,w) = vy, where
v is the density of states at the Fermi energy) for a point charge e inserted into the system, i.e., for

¢t0t (q7w) ¢(qv w)' (42)

4dme
¢(q,w) = & (43)

Explain your result in physical terms (screening).



