
Problem Set 5

Quantum Field Theory and Many Body Physics (SoSe2018)

Due: Thursday, May 24, 2018 before the beginning of the class

In this problem set, we study various examples and aspects of linear response. We �rst consider a very
simple linear response problem for the quantum harmonic oscillator. Then, we prove important general
properties of response functions, including the Kramers-Kronig relations which are a direct consequence of
causality and the associated analytic properties of the response function in the complex frequency plane.
Finally, we consider the polarization operator, a very important response function in the theory of metals.
We �rst compute it for free electrons and subsequently consider interacting electrons in the random-phase
approximation.

Problem 1: Polarizability of a harmonic oscillator (5+5+5+5+5 points)

In this problem, we consider a very simple example for a response function, namely the polarizability χ
of a charge e bound in a harmonic oscillator potential. The polarizability is de�ned through

d = χE , (1)

where d is the dipole moment, d = ex, and E the applied electric �eld. The Hamiltonian of the system is

H =
p2

2m
+

1

2
mω2

0x
2 − exE . (2)

(a) Use �rst order perturbation theory in a time-independent electric �eld E for the eigenstate |ψn〉 of H
to derive the static polarizability χ. Speci�cally, according to �rst-order perturbation theory,

|ψn〉 = |n〉+
∑
m 6=n
|m〉〈m| − eEx|n〉

En − Em
, (3)

where |n〉 denotes the eigenstates of the unperturbed harmonic oscillator (E = 0) with eigenenergies
En = ~ω0(n+ 1

2). Use this expression to compute the thermal expectation value

d =
∞∑
n=0

e−βEn

Z
〈ψn|ex|ψn〉 (4)

to linear order in the applied �eld E . (Here, the partition function is Z =
∑∞

n=0 e
−βEn .) You may �nd it

useful that x couples only neighboring harmonic oscillator eigenstates with matrix elements (prove!)

〈n+ 1|x|n〉 =
`osc√

2

√
n+ 1 (5)

〈n− 1|x|n〉 =
`osc√

2

√
n (6)

in terms of the oscillator length `2osc = ~/mω0. Eventually, you can perform the sum over n in the

expression for d and �nd χ = e2

mω2
0
.

(b) Now de�ne a dynamic polarizability as the response to a time-dependent electric �eld E(t) through

d(t) =

∫ ∞
∞

dt′ χ(t, t′)E(t′). (7)
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Use the general Kubo formula derived in class to obtain the Kubo formula

χ(t, t′) =
ie2

~
θ(t− t′)〈[x(t), x(t′)]〉 (8)

for the polarizability. Set up and solve the Heisenberg equation of motion for x(t) (for the unperturbed
harmonic oscillator!) to �nd

x(t) = x cosω0t+
p

mω0
sinω0t. (9)

Use this to evaluate the correlation function explicitly and �nd

χ(t, t′) =
e2

mω0
θ(t− t′) sin(ω0(t− t′)). (10)

(c) Fourier transform χ(t, t′) to the time domain and show that

χ(ω) =
e2/m

ω2
0 − (ω + iη)2

, (11)

where η denotes a positive in�nitesimal. Explain how this is related to the result in (a).

(d) Compute the thermal Green's function

G(τ, τ ′) = 〈Tτx(τ)x(τ ′)〉, (12)

from the path integral for E = 0, giving explicit results in the (Matsubara) frequency domain. Show that
the retarded polarizability can be obtained from G(iΩ) by analytical continuation.

(e) Compute the corresponding spectral function ρ(ω).

Problem 2: General properties of response functions (5+5+5+5+5 points)

In this problem we want to discuss some important general properties of response functions D(t, t′) in
frequency representation. Consider a retarded Green's functions for bosonic operators, Â and B̂ with
Lehmann representation

D(ω) =
1

Z

∑
m,n

(e−βEm − e−βEn)
〈m|Â|n〉〈n|B̂|m〉

ω − (En − Em) + iη
, (13)

and spectral representation

D(ω) =

∫
dω

2π

ρ(ω′)

ω − ω′ + iη
(14)

in terms of the spectral function

ρ(ω) =
1

Z

∑
n,m

(e−βEm − e−βEn)〈m|Â|n〉〈n|B̂|m〉 2πδ(En − Em − ω). (15)

(a) Use the Lehmann representation to show that

[DAB(ω)]∗ = DA†B†(−ω) (16)

Speci�cally, this implies for hermitian operators Â and B̂ that

ReD(ω) = ReD(−ω), (17)

Im D(ω) = −ImD(−ω), (18)
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ω ∈ C

C

Figure 1: Integration contour

i.e., ReD(ω) is even in ω, Im D(ω) is odd.

(b) Show that the spectral function is real for the important case B̂ = Â† (with Â not necessarily a
Hermitian operator).

(c) Prove the useful and frequently used identity (for in�nitesimal η > 0)

1

x+ iη
= P(

1

x
)− iπδ(x), (19)

where P denotes the principal value and δ(x) is the Dirac δ-function. [Hint: The principal value can be
represented as

P
∫
dx

f(x)

x
= lim

η→0

∫
dx f(x)

x

x2 + η2
, (20)

and
η

x2 + η2
= πδ(x) (21)

is a representation of the Dirac δ-dunction (why?).]

(d) Use the identity in (c) to show that for B̂ = Â†

Im D(ω) = −1

2
ρ(ω), (22)

and thus

D(ω) = −
∫
dω′

π

ImD(ω)

ω − ω′ + iη
. (23)

(e) Finally, we want to discuss a general relation between the real and imaginary parts of the response
function D(ω) which is a direct consequence of causality and referred to as Kramers-Kronig relation. The
Lehmann representation implies thatD(ω) is an analytic function in the upper half of the complex ω-plane.
Explain why ∫

C

dz

2πi

D(z)

z − ω + iη
= 0, (24)

with the contour C speci�ed in Fig. 1. Using that the integral over the semicircle vanishes when pushed
to in�nity, derive the Kramers-Kronig relation

D(ω) = iP
∫ ∞
−∞

dω′

π

D(ω′)

ω − ω′ . (25)

Speci�cally, this relation implies that

ReD(ω) = −P
∫ ∞
−∞

dω′

π

ImD(ω′)

ω − ω′ , (26)

ImD(ω) = P
∫ ∞
−∞

dω′

π

ReD(ω′)

ω − ω′ . (27)
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Check that these relations work out for the response function in Eq. (11) above.

Problem 3: Polarization operator (10+5+10 points)

A very important response function describes the density response of a Fermi gas (e.g., non-interacting
electrons) with chemical potential µ to an applied electric potential φ(r, t),

δρ(r, t) = −e2
∫
dr′dt′Π0(rt, r

′t′)φ(r′, t′). (28)

Since the system is translationally invariant in both space and time, we have

δρ(q, ω) = −e2Π0(q, ω)φ(q, ω). (29)

Π0 is often referred to as the polarization operator. It can be computed by applying the Lehmann
representation to a single electron system with occupation probability

nk =
1

eβ(εk−µ) + 1
(30)

of the momentum states |k〉. The charge density is

ρ̂(r) = eδ(r− r̂), (31)

and the electric potential couples to the electrons through

Hint = eφ(r̂) =

∫
dr ρ̂(r)φ(r). (32)

Correspondingly, we obtain in Fourier representation ρ̂(q) = e−iq·̂r and Hint = 1
V

∑
q ρ̂(−q)φ(q). Using

this in the Lehmann representation for the Kubo formula for Π0, we �nd (with εk = k2/2m)

Π0(q, ω) = − 1

e2
1

V

∑
kk′

(nk − nk′)
〈k|ρ̂(q)|k′〉〈k′|ρ̂(−q)|k〉

ω + εk − εk′ + iη
. (33)

Please make sure that you understand the logic leading to this expression.

(a) Evaluate the matrix elements 〈k|ρ̂(q)|k′〉 and show that

Π0(q, ω) = − 1

V

∑
k

nk − nk+q

ω + εk − εk′+q + iη
(34)

(b) Evaluate both ReΠ0(q, ω) and ImΠ0(q, ω) explicitly in 3d by performing the integration over k

( 1
V

∑
k →

∫
d3k
(2π)3

). [Hint: See, e.g. the book by Fetter and Walecka, p158�, if you need help.]

(c) Imagine now a Fermi system of charged particles, e.g. electrons. Let us also assume that the average
electronic charge density is compensated by a uniform and rigid background of opposite charge (represent-
ing the ion cores in a solid). Then, the change in the electronic charge density δρ(rt) is itself producing
an induced electric potential, φind(r, t),

φind(r, t) =

∫
dr′

δρ(r′, t)

|r− r′| . (35)

The actual induced charge density is thus a response to the total potential

φtot(r, t) = φ(r, t) + φind(r, t), (36)
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which is the sum of the external potential φ(r, t) and the induced potential. Thus,

δρ(q, ω) = −e2
∫
dr′dt′Π0(rt, r

′t′)
(
φ(r′, t′) + φind(r′, t′)

)
. (37)

Note that this is an approximation (called RPA or random phase approximation for historical reasons)
in that we neglect the e�ects of the Coulomb interaction on Π0. Show that this equation can be Fourier
transformed to give

δρ(q, ω) = −e2Π0(q, ω) (φ(q, ω) + φind(q, ω)) . (38)

Moreover, show that

φind(q, ω) =
1

e2
v(q)δρ(q, ω), (39)

with v(q) = 4πe2

q2 . De�ning a response function Π(q, ω) describing the density response of the interacting

Fermi system to the externally applied potential φ(q, ω), i.e.,

δρ(q, ω) = −e2Π(q, ω)φ(q, ω), (40)

show that

Π(q, ω) =
Π0(q, ω)

1 + v(q)Π0(q, ω)
. (41)

Use this to �nd

φtot(q, ω) =
1

1 + v(q)Π0(q, ω)
φ(q, ω). (42)

Compute the total potential in real space within the Thomas-Fermi approximation (Π0(q, ω) = ν0, where
ν0 is the density of states at the Fermi energy) for a point charge e inserted into the system, i.e., for

φ(q, ω) =
4πe

q2
. (43)

Explain your result in physical terms (screening).
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