
Problem Set 7

Quantum Field Theory and Many Body Physics (SoSe2018)

Due: Thursday, June 7, 2018 at the beginning of the lecture

In this problem set, we study examples of e�ective �eld theories.

Problem 1: E�ective action of an LC circuit (25 points)

To illustrate the concept of an e�ective ��eld� theory, consider an LC circuit coupled to a harmonically

bound charge e:

L

C

x

The charge with coordinate x has a Hamiltonian

Hd =
1

2
mẋ2 +

1

2
mω0x

2 − eEx, (1)

where E is the electric �eld of the capacitor. As familiar from elementary physics, the LC circuit is also

a harmonic oscillator, as re�ected in its energy

HLC =
1

2
IQ̇2 +

Q2

2C
. (2)

This can also be written in terms of the electric �eld E = Q/Cd in the capacitor (d is the distance between
the capacitor plates),

HLC =
1

2g

(
Ė2 + ω2

LCE
2
)
. (3)

Here ωLC = 1/LC is the resonance frequency of the LC circuit and g = 1/C2Ld2. Thus, we can express

the partition function of this system as

Z =

∫
[dE][dx] exp

[
−
∫ β

0
dτ

(
1

2
mẋ2 +

1

2
mω0x

2 − eEx+
1

2g

(
Ė2 + ω2

LCE
2
))]

. (4)

Now consider the limit ωLC � ω0 and derive an e�ective action for the LC circuit by tracing out the charge

coordinate x (i.e. perform the integral over [dx]). Show that to leading order in this limit, the e�ective

action is again a harmonic-oscillator action with renormalized parameters. You should �nd that to leading

order, only the frequency becomes renormalized and the �mass� prefactor of Ė2 remains unchanged.

Problem 2: Friction in quantum mechanics (5+5+5+5+5 points)

Friction is an important phenomenon in everyday life but cannot be described within a Hamiltonian

language. This makes it di�cult to describe at the quantum level. In this problem, we show that friction

can be captured in quantum mechanics within the language of e�ective ��eld� theories.

First consider a classical particle subject to a frictional force −γẋ and driving force F (t). The equation

of motion is

mẍ = −γẋ+ F. (5)
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In frequency space we can de�ne the response function χ through

x(ω) = χ(ω)F (ω), (6)

and read o� from the equation of motion that

χ(ω) =
1

−mω2 − iωγ
. (7)

Let us now reproduce this from a quantum perspective.

Consider a quantum particle subject to a uniform force F , coupled to an environment consisting of (many)

harmonic oscillators,

H =
1

2
mẋ2 − Fx+

∑
i

(
1

2
µiẋ

2
i +

1

2
µi (ωixi − gix)2

)
. (8)

The harmonic oscillators are meant to model the environmental degrees of freedom which dissipate the

energy of the particle. De�ne the spectral density of the environmental oscillators

n(ω) =
∑
i

δ(ω − ωi), (9)

and the coupling function

g2(ω) =
1

n(ω)

∑
i

µig
2
i δ(ω − ωi). (10)

The system can also be described by the imaginary-time action

S =

∫
dτ

(
1

2
mẋ2 − Fx+

∑
i

(
1

2
µiẋ

2
i +

1

2
µi (ωixi − gix)2

))
. (11)

(a) Integrate out the harmonic-oscillator environment to obtain the e�ective action for x (setting F = 0),

Se� =

∫
dτ

1

2
mẋ2 +

∫
dτdτ ′

1

4
G(τ − τ ′)

(
x(τ)− x(τ ′)

)2
, (12)

where G(τ − τ ′) is the (Matsubara) Fourier transform of

G(iω) =
∑
i

µiω
2
i g

2
i

ω2 + ω2
i

. (13)

(b) Use this result to show that the response function de�ned by

x(τ) =

∫
dτ ′ χ(τ − τ ′)F (τ ′) (14)

is given by

χ(ω + iη) =
1

−m(ω + iη)2 − (G(ω + iη)− G(0 + iη))
. (15)

By comparison with the classical response function, we can thus identify the friction coe�cient

γ = Im
G(ω + iη)− G(0 + iη)

ω
, (16)

and the mass renormalization

m∗ = m+ Re
G(ω + iη)− G(0 + iη)

ω2
. (17)
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(c) Show that

γ =
π

2
n(|ω|)g2(|ω|). (18)

You might �nd the identity 1
x−iη = P

(
1
x

)
+ iπδ(x) useful. Show also that

m∗ = m+ P
∑
i

µig
2
i

1

ω2
i − ω2

, (19)

where P denotes the principal value.

(d) Choose n(ω)g2(ω) = n0g0θ(Ω − ω), where Ω is an upper frequency (ultraviolet) cuto� of the phonon

spectrum, and the step function is given by θ(x) = 1 (θ(x) = 0) for x > 0 (x < 0). Then

γ =
π

2
n0g

2
0. (20)

Show that the associated mass renormalization is given by

m∗ = m− n0g
2
0

Ω
. (21)

(e) Now, assume n(ω)g2(ω) = n0g
2
0e
−ω2

Ω2 , i.e., a phonon spectrum with a smooth cuto�. Show that

G(τ − τ ′) =

∫
dω′

ω

2
n(ω)g2(ω)e−ω|τ |, (22)

and perform the frequency integral to obtain the popular e�ective action

Se� =

∫
dτ

1

2m
ẋ2 +

∫
dτ dτ ′

γ (x(τ)− x(τ ′))2

4π(τ − τ ′)2
. (23)

Problem 3: Equation of motion approach to Hartree-Fock (10+10+5 points)

The Hartree-Fock approximation describes interacting systems in terms of an approximate non-interacting

one. In this problem, we want to formulate the Hartree-Fock approximation in the framework of of the

equation of motion for the single-particle Green function,

(∂τ +H0)G(rτ, r′τ ′)+

∫
dr1dτ1v(r−r1, τ −τ1)〈Tτψ(r1, τ1)ψ(r, τ)ψ†(r1, τ

+
1 )ψ†(r′, τ ′)〉 = δ(r−r′)δ(τ −τ ′).

(24)

Here, τ+1 is in�nitesimally later than τ1 and we consider a system with a Hamiltonian of the form

H =

∫
dr ψ†(r)

(
−∇

2

2m
+ U(r)

)
ψ(r) +

1

2

∫
drdr′ψ†(r)ψ†(r′)v(r− r′)ψ(r′)ψ(r), (25)

whose non-interacting part is denoted as H0. We also de�ned v(r− r1, τ − τ1) = v(r− r1)δ(τ − τ1).
(a) To close the equation of motion, we have to approximate

〈Tτψ(r1, τ1)ψ(r, τ)ψ†(r1, τ
+
1 )ψ†(r′, τ ′)〉 (26)

in terms of the single-particle Green function G(rτ, r′τ ′). We can do that by neglecting the two-body

interaction v(r− r′) in evaluating this correlator. Explain why this approximation yields

〈Tτψ(r1, τ1)ψ(r, τ)ψ†(r1, τ
+
1 )ψ†(r′, τ ′)〉 ' ±G(rτ, r′τ ′)G(r1τ1, r1τ

+
1 ) + G(rτ, r1τ1)G(r1τ1, r

′τ ′). (27)
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(b) In the Hartree approximation, one keeps only the �rst of the two terms on the right hand side of the

last equation. This yields the equation of motion

(∂τ +H0 + VH)G(rτ, r′τ ′) = δ(r− r′)δ(τ − τ ′), (28)

where we de�ned the Hartree potential

VH(r) = ±
∫

dr1v(r− r1)G(r1τ, r1τ
+). (29)

Express the Hartree potential in terms of the eigenfunctions and eigenenergies of H0 + VH ,

(H0 + VH)φα(r) = εαφα(r), (30)

and �nd

VH(r) =

∫
dr1v(r− r1)

∑
α

|φα(r1)|2n(εα). (31)

Here, n(ε) denotes the Bose or Fermi function, respectively.

(c) Now consider also the second term in Eq. (27) which introduces the nonlocal Fock potential in addition,

(∂τ +H0 + VH)G(rτ, r′τ ′)±
∫

dr1VF (r, r1)G(r1τ, r
′τ ′) = δ(r− r′)δ(τ − τ ′). (32)

Also express the Fock potential in terms of the e�ective single-particle eigenfunctions and eigenenergies in

Hartree-Fock approximation.
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