
Problem Set 9

Quantum Field Theory and Many Body Physics (SoSe2018)

Due: Thursday, June 21, 2018 at the beginning of the lecture

This problem provides further background on Grassman variables, introduces the frequently used resonant-

level model, and familiarizes you with the operator approach to the BCS theory of superconductivity, the

latter to complement the functional-integral approach which we will cover later in the class.

Problem 1: Grassmann basics (5+10+10 points)

Read your favorite book (e.g., Negele & Orland) to formulate and prove the following statements:

(a) Linear changes of variables in Grassmann integrals.

(b) Use (a) to prove the most general Gaussian integral for Grassmann variables as given in the class.

(c) Prove the resolution of the identity for fermionic coherent states.

Problem 2: Resonant-level model (10+5+5+5 points)

There are many physical situations in which a localized fermionic level is coupled to a (non-interacting)

fermionic many-body system with a continuum of states. For instance, consider an atom placed on a

metallic substrate. The atom has a large level spacing so that it can be a good approximation to consider

only the atomic level which is closest to the Fermi energy of the substrate. We may then be interested in

how the atomic level is in�uenced by the presence of the surface. Another situation where this model is

relevant is a quantum dot coupled to two electronic electrodes. If the quantum dot is su�ciently small, its

spectrum will also be discrete with large level spacing so that we can restrict attention to the level which

is closest to the Fermi energy in the electrodes.

As it is non-interacting, this problem can of course be solved by elementary means. In this problem, we

want to treat it by deriving an e�ective action for the localized level by integrating out the continuum

�eld. The Hamiltonian of the system takes the form

H = εdd
†d+

∑
k

εkψ
†
kψk +

t√
V

∑
k

(ψ†kd+ d†ψk). (1)

The �rst term accounts for the localized fermionic level with energy εd, the second term of the fermionic

continuum with dispersion εk and volume V , and the last term allows the fermions to hop between the

localized level and the continuum. Note that this hopping is local at the position of the localized level

(taken to be at the origin) as re�ected in the fact that the hopping amplitudes t (taken as real) are assumed

independent of momentum. We need not be very speci�c about the dispersion εk of the continuum. We will

simply assume that the continuum has a constant density of states ν0 and a with bandwidth −D < εk < D,

where D is some large energy. (This is sometimes refered to wide-band limit.)

(a) Write down the Grassmann functional integral for the partition function of this model. Integrate out

the �eld ψk of the fermionic continuum and show that the e�ective action for the localized level becomes

S = d∗(∂τ + εd − µ+ Σ)d (2)

in compact matrix notation or

S =

∫
dτd∗(τ)(∂τ + εd − µ)d(τ) +

∫
dτdτ ′d∗(τ)Σ(τ, τ ′)d(τ ′) (3)

when keeping the explicit time integrals. The self energy in this action is found to be

Σ(τ, τ ′) = − 1

V

∑
k

〈τ | t2

∂τ + εk − µ
|τ ′〉. (4)
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(b) Show that in Matsubara-frequency representation, the self-energy becomes

Σ(iωn) = − 1

V

∑
k

t2G(k, iωn) (5)

with the Green function

G(k, iωn) =
−1

iωn − εk + µ
(6)

of the fermionic continuum. To evaluate the self energy explicitly, replace the sum over momenta by an

integral in the usual way,
1

V

∑
k

→ ν0

∫ D

−D
dεk (7)

and show that to leading order in µ/D and ωn/D (i.e., assuming that the bandwidth D is large)

Σ(iωn) = −ν0t2 ln(1− 2µ/D)− iπν0t2sgnωn. (8)

The real part of the self energy can be interpreted as a small shift in the energy of the localized level. Note

that it approaches zero as D → ∞. Let us take this limit in the following and retain only the imaginary

part of the self energy in the following.

(c) Now use the resulting e�ective action to obtain the thermal Green function G(iωn) of the localized

level and show that it becomes

G(iωn) =
−1

iωn − εd + µ+ iπν0t2sgnωn
. (9)

Show that the corresponding spectral function is

ρ(ω) =
Γ/2π

(ω − εd)2 + (Γ/2)2
, (10)

where we introduced Γ = 2πt2ν0, i.e.,

G(iωn) = −
∫
dω′

ρ(ω′)

iωn − ω′
. (11)

Thus, we see that the imaginary part of the self energy broadens the delta-like spectral function of the

uncoupled localized level into a Lorentzian, with the broadening given by Γ/2. Remembering Fermi's

golden rule, interpret the explicit expression for Γ.

(d) To further interpret the imaginary part of the self energy, perform the appropriate analytical continu-

ation to obtain the retarded Green function and Fourier transform your result to real time. How does the

broadening Γ enter into the real-time retarded Green function?

Problem 3: Operator approach to BCS theory (10+15 points)

In class, we will discuss the functional integral approach to BCS theory. In this exercise, we derive the

same mean �eld theory in the operator formalism and derive the fermionic excitation spectrum of the

superconductor more explicitly.

Consider the Hamiltonian of a uniform electron system with an e�ectively attractive and local interaction,

H =

∫
dr
∑
σ

ψ†σ(r) [ε(−i~∇)− µ]ψσ(r)− g
∫

drψ†↑(r)ψ†↓(r)ψ↓(r)ψ↑(r). (12)

(a) The mean �eld approximation consists of writing

−gψ↓(r)ψ↑(r) = ∆(r) + [−gψ↓(r)ψ↑(r)−∆(r)], (13)
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where ∆(r) will turn out to be the complex-valued gap function, and neglecting quadratic terms in the

�uctuations [−gψ↓(r)ψ↑(r) −∆(r)] about the mean �eld ∆(r). Make this approximation and derive the

mean �eld Hamiltonian

H '
∫

dr
∑
σ

ψ†σ(r) [ε(−i~∇)− µ]ψσ(r)+

∫
dr∆∗(r)ψ↓(r)ψ↑(r)+∆(r)ψ†↑(r)ψ†↓(r)+

∫
dr

1

g
|∆(r)|2. (14)

Write this Hamiltonian more compactly by introducing the Nambu spinor

φ(r) = [ψ↑(r), ψ†↓(r)]T . (15)

Show that

H '
∫

drφ†(r)

[
ξ(−i~∇) ∆

∆∗ −ξ(−i~∇)

]
φ(r) +

∫
dr

1

g
|∆(r)|2 +

∑
k

ξk, (16)

where ξ(−i~∇) = ε(−i~∇)−µ. The last two terms are merely constants which are important for computing

the ground-state energy, but not for diagonalizing the Hamiltonian. We will drop them in the following.

The Hamiltonian

H =

[
ξ(−i~∇) ∆

∆∗ −ξ(−i~∇)

]
(17)

is referred to as Bogoliubov-de Gennes Hamiltonian. The corresponding eigenvalue equation is known as

Bogoliubov-de Gennes equation, which describes the energies and wavefunctions of fermionic excitations

of the superconductor (see below) and which is widely used in the theory of superconductivity. Note that

∆(r) need not be uniform in space.

(b) We now need to diagonalize Hamiltonians with terms of the sort ψψ and ψ†ψ†. This is done by means

of a Bogoliubov transformation (which we already encoutered earlier in the class when we were studying

the transverse �eld Ising model). Let us assume that the superconductor is translationally invariant, so

that

H =
∑
k

φ†k

[
ξk ∆
∆∗ −ξk

]
φk, (18)

where φk = [ck↑, c
†
−k↓]

T . This Hamiltonian can be diagonalized by a suitable linear combination of

annihilation and creation operators, termed Bogoliubov transformation,[
γk,↑

γ†−k,↓

]
=

[
cos θk sin θk
− sin θk cos θk

]
φk. (19)

Show that the newly introduced operators (termed Bogoliubov quasiparticle operators) are fermions.

Rewrite the Hamiltonian (for real ∆ for simplicity) in terms of the new operators and show that it

becomes diagonal when choosing

ξk sin 2θk −∆ cos 2θk = 0. (20)

Show that this implies

uk = cos θk =

√
1

2

[
1 +

ξk
Ek

]
(21)

vk = sin θk =

√
1

2

[
1− ξk

Ek

]
(22)

with the quasiparticle energy Ek =
√
ξ2k + ∆2 and the standard notation of uk (electron wavefucntion) and

vk (hole wavefunction). Finally show that when written in terms of the new operators, the Hamiltonian

takes the form

H =
∑
k

Ek(γ
†
k↑γk↑ − γ−k↓γ

†
−k↓). (23)
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Discuss the excitation spectrum described by this Hamiltonian.

(If you are ambitious, you may also want to continue this discussion and derive the gap equation and

compute the condensation energy of the superconducting state.)
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