Abgabetermin: Montag, 3.6.2019, 14:15 in der Vorlesung

Aufgabe 1: Hamilton-Mechanik

(5 + 5 P.)

- (a) Geben Sie die Hamilton-Funktion sowie die Hamilton-Gleichungen an für die ebene Bewegung eines Teilchens im Zentralkraftpotential. Benutzen Sie Polarkoordinaten.
- (b) Zeigen Sie für dieses Problem im Rahmen des Hamilton-Formalismus (Poissonklammer), dass der Drehimpuls $\mathbf L$ und die Energie Konstanten der Bewegung sind.

Aufgabe 2: Perle auf rotierender Drahtschleife

(7 + 3 P.)

Sie haben in den Aufgaben 2.3 und 2.4 die Bewegung einer Perle im Schwerefeld auf einer rotierenden Drahtschleife diskutiert. Die Lagrange-Funktion ergab sich zu

$$L = \frac{1}{2}mR^2(\dot{\phi}^2 + \omega^2 \sin^2 \phi) + mgR\cos \phi$$

- (a) Bestimmen Sie den zu ϕ konjugierten Impuls p_{ϕ} , die Hamilton-Funktion H sowie die Hamiltonschen Bewegungsgleichungen.
- (b) Ist H die Energie des Systems? Diskutieren Sie das Ergebnis.

Aufgabe 3: Poisson-Klammern

(1+1+2+2+2+2 +2 P.)

Beweisen Sie folgende Identitäten zwischen Poisson-Klammern:

- (a) $\{f,g\} = -\{g,f\}$
- (b) $\{f+g,h\} = \{f,h\} + \{g,h\}$
- (c) $\{fg, h\} = \{f, h\}g + f\{g, h\}$
- (d) $\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0$
- (e) $\{L_i, L_j\} = -\epsilon_{ijk}L_k$ ($\mathbf{L} = \mathbf{r} \times \mathbf{p}$ ist der Drehimpuls). Sind also zwei Drehimpulskomponenten Erhaltungsgrgrößen, so ist es auch die dritte Komponente.
- (f) Zeigen Sie, dass die Poisson-Klammer zweier Erhaltungsgrößen wieder eine Konstante der Bewegung ist, selbst wenn die Erhaltungsgrößen explizit von der Zeit abhängen! *Hinweis:* Benutzen Sie die Jacobi-Identität aus Teilaufgabe (d).

Aufgabe 4: Kreisbahn im Zentralkraftfeld

(2 + 2 + 3 + 3 P.)

Betrachten Sie ein Teilchen der Masse m in einem Zentralpotential

$$V(r) = -\frac{c}{r^{\alpha}}$$

mit $\alpha < 2$, $\alpha \neq 0$, c > 0 für $\alpha > 0$ bzw. c < 0 für $\alpha < 0$.

- (a) Stellen Sie die Bewegungsgleichungen für die Komponenten r, θ, ϕ des Vektors \mathbf{r} in Kugelkoordinaten auf.
- (b) Zeigen Sie, dass zu jedem Drehimpuls ${\bf L}$ des Teilchens eine Kreisbahn existiert. Berechnen Sie deren Radius R und die Umlaufkreisfrequenz ω .
- (c) Zeigen Sie, dass die Kreisbahn aus (b) gegenüber kleinen radialen Störgungen stabil ist. Anleitung (lineare Stabilitätsanalyse): Schreiben Sie $r(t) = R + \delta r(t)$ sowie $\phi(t) = \omega t + \delta \phi(t)$ und entwickeln Sie die Bewegungsgleichungen bis zur ersten Ordnung in $\delta r(t)$, $\delta \phi(t)$. (Was passiert mit θ ?) Sie erhalten eine Bewegungsgleichung für die radiale Abweichung $\delta r(t)$. Diskutieren Sie das Verhalten der Lösungen für $\delta r(t)$.

(d) Für welche Werte von α bleibt die Bahn bei kleinen radialen Störungen geschlossen, d.h. periodisch? Vergleichen Sie zur Beantwortung dieser Frage die Kreisfrequenz der Oszillationen (in $\delta r(t)$) um die Kreisbahn mit der Umlaufkreisfrequenz ω .