Übungen zur Theoretischen Physik II

Abgabetermin: Mittwoch, 12.6.2019, 10:15 in der Vorlesung

Aufgabe 1: Fourier-Reihen

(5 + 5 P.)

(a) Berechnen Sie die Koeffizienten der Fourier-Reihe für eine periodische Sequenz f(t) von Rechteckpulsen der Länge τ , der Periode $T=2\pi/\Omega$ und der Stärke f_0 . Die Pulssequenz sei symmetrisch unter $t\to -t$,

$$f(t) = \begin{cases} f_0 & nT - \tau/2 < t < nT + \tau/2 \\ 0 & \text{sonst} \end{cases}$$
 (1)

für $n \in \mathbb{Z}$. Geben Sie zunächst die Koeffizienten der komplexen Fourier-Reihe

$$f(t) = \sum_{n = -\infty}^{\infty} a_n e^{in\Omega t} \tag{2}$$

an und bestimmen Sie anschließend die Koeffizienten der reellen Fourier-Reihe

$$f(t) = a_0 + \sum_{n=1}^{\infty} [b_n \cos(n\Omega t) + c_n \sin(n\Omega t)].$$
(3)

Diskutieren Sie, wie die Anzahl der relevanten Fourier-Koeffizienten von der Dauer τ der Pulse abhängt.

(b) Ensprechend für eine Sequenz von Sägezahn-Pulsen

$$f(t) = x - nT$$
 $nT - T/2 < t < nT + T/2$ (4)

 $mit n \in Z.$

Aufgabe 2: Dirac'sche δ -Funktion

(3 + 3 + 4 P.)

Berechnen Sie die folgenden Integrale mit der Dirac'schen δ -Funktion:

$$I_1 = \int_{-\infty}^{\infty} dx f(x) \delta(x - x_0)$$

$$I_2 = \int_{-\infty}^{\infty} dx f(x) \delta(ax)$$

$$I_3 = \int_{-\infty}^{\infty} dx f(x) \delta(x^2 - x_0^2)$$

Ohne Punkte: Überzeugen Sie sich, dass Ihre Resultate mit der allgemeinen Formel

$$\delta(g(x)) = \sum_{i} \frac{1}{|g'(x_i)|} \delta(x - x_i) \tag{5}$$

übereinstimmen, wobei die x_i die Nullstellen der Funktion g(x) sind und angenommen wird, dass die Ableitungen $g'(x_i)$ alle von Null verschieden sind. Können Sie diese Formel beweisen?

Aufgabe 3: Fourier-Reihe einer periodischen Sequenz von δ -Peaks

Berechnen Sie die Fourier-Reihe der periodischen Funktion

$$f(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$$
 (6)

Aufgabe 4: Schwingungsfrequenz

(10 P.)

(10 P.)

Betrachten Sie ein Pendel mit Fadenlänge ℓ und Masse m_2 . Zusätzlich sei am Aufhängepunkt eine Masse m_1 , die horizontal entlang der x-Achse frei beweglich sei. Zeigen Sie, dass die Eigenfrequenz des Pendels für kleine Auslenkungen den Wert

$$\omega = \sqrt{\frac{m_1 + m_2}{m_1} \frac{g}{\ell}} \tag{7}$$

annimmt.