
Problem Set 4

Theoretical Solid State Physics (Summer 2021)

Due: Thursday May 14, 2021, before the beginning of class

Problem 1: Fermionic Bogoliubov transformation (10+10+10 points)

This problem extends the Bogoliubiv transformation to fermionic systems with pairing terms. Our starting
point is a fermion system with Hamiltonian

H =
∑
k>0

ψ†kKkψk,

where we introduced ψk = [ck, c
†
−k]T and

Kk =

(
ξk δ∗k
δk −ξk

)
with δ = |δ|eiϕ.
(a) Show that a transformation ψk = Tψ′k to new operators ψ′k is canonical if 1 = TT †, i.e, when T is
unitary. Show how this can be used to solve the Hamiltonian and that the excitation spectrum is fermionic
with excitation energies

Ek =
√
ξ2k + |δk|2.

(b) Parametrize

T =

(
u∗k −vk
v∗k uk

)
with uk = cos θke

iϕ/2 and vk = sin θke
i−ϕ/2. Compute uk as well as vk explicitly. Express the new

fermionic operators ψ′k = [γk, γ
†
−k]T in terms of the ck and the c†k.

(c) Show that the ground state can be written as

|gs〉 = c†k=0

∏
k>0

(uk + vkc
†
−kc
†
k)|vac〉.

Problem 2: 1D anisotropic XY model in a transverse magnetic �eld (10 + 10 + 20 points)

Consider the anisotropic 1D spin-12 XY model in a transverse magnetic �eld B,

H = −
∑
j

[
(J + ∆)Sx

j S
x
j+1 + (J −∆)Sy

j S
y
j+1 +BSz

j

]
.

In the limit ∆ = 0, this is the XY model in a transverse �eld.

(a) Use the Jordan-Wigner transformation to rewrite this Hamiltonian as a quadratic fermion problem.

(b) Diagonalize the fermion Hamiltonian by Fourier transforming to momentum space (lattice of M sites
with periodic boundary conditions),

fj =
1√
M

∑
k

cke
ikj ,

and using the fermionic Bogoliubov transformation (see problem 1). You should �nd the excitation spec-
trum

Ek =
√

(−J cos k −B)2 + (∆ sin k)2
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(c) Show that the excitation spectrum becomes gapless for ∆ = 0 and for |J | = |B|. These points
correspond to phase transitions. Draw a phase diagram for �xed J as a function of B and ∆ and identify
the various phases.

Problem 3: Duality transformation for the transverse �eld Ising model (20+20 points)

The model in Problem 2 with ∆ = J is known as the transverse �eld Ising model (also: quantum Ising
model). Traditionally, one writes the exchange coupling in terms of Sz and applies the transverse �eld in
the x direction,

H = −J
∑
j

[
σzjσ

z
j+1 + gσxj

]
.

Here, we also write the model in terms of Pauli matrices (i.e., dropping the factors of 1/2 in the spin
operators), assume ferromagnetic coupling J > 0, and write the transverse �eld as Jg.

(a) De�ne new operators through

Sz
i =

∏
j≤i

σxj ; Sx
i = σzi σ

z
i+1.

You can think of these operators as living on the bonds of the original lattice. First explain why these are
domain-wall operators, i.e., that Sx

i detects the existence of a domain wall at the bond (i, i+ 1) and that
Sz
i can be thought of a domain-wall creation operator in the ferromagnetic phase.

(b) Show that these new operators are also Pauli operators, i.e., they square to unity, anticommute on
the same site, and commute on di�erent sites. (The angular-momentum algebra is automatically obeyed
when de�ning Sy

i = −iSz
i S

x
i .)

(c) Invert the duality transformation to obtain

σzi =
∏
j<i

Sx
j ; σxi = Sz

i S
z
i−1.

and write the Hamiltonian in terms of the new Pauli operators. Show that this maps the tranverse
�eld Ising model onto itself, with J → Jg and g → 1/g, i.e., the Ising model is self dual under this
transformation. What happens at the �xed point g = 1?

It is worthwhile to think about this further. The duality transformation obviously maps strong to weak
coupling and vice versa, i.e., it maps the ferromagnetic and paramagnetic phases onto one another. In the
original model, the ferromagnetic phase has an order parameter σzi , which has a nonzero expectation value
in the symmetry-broken ground state. Thus, the duality transformation implies that Sz

i =
∏

j≤i σ
x
j has a

�nite expectation value in the paramagnetic phase and may thus be referred to as a disorder parameter
(nonzero in the disordered phase and zero in the ordered phase). Since Sz

i =
∏

j≤i σ
x
j is a domain-wall

creation operator, the paramagnetic phase can be thought of as a condensate of domain walls. (Remember
that the Bose �eld has a �nite expectation value in the Bose-condensed phase.)

This duality transformation can also be extended to the transverse �eld Ising model in 2D. In a 2D square
lattice, the number of bonds is twice the number of sites. Thus, di�erent con�gurations of the bond spins
must correspond to the same con�guration of the original spins. For this reason, the dual of the 2D
transverse �eld Ising model is actually a Z2 lattice gauge theory. (Remember the redundance in describing
the physical �eld con�gurations in electromagnetism, the most familiar gauge theory, when using the
electromagnetic potentials.)
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