Pathways of decay of excited singlet states
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Quenching
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The quantum yield when [Q] = O is:
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The Stern—Volmer equation: '&jﬂ =1+ T3ko[Q] (15)

i




A+hv— A* (absorption)
Determination of the lifetime of excited state (t)

A" —= A (emission)
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0,: well-known quencher of fluorescence

Ground state: )
Excited singlet states: 1A 4nd 1T

IA* +20,0°2) — 1A+ 10,(1A) or

A" +°0,(°%) = *A+10,("A)
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Excimer or Exciplex formation

cimers :‘excited dimer’

rmation by collision:  Ip* 4 IM = 1{MM)*

excitation energy is delocalized

Excimer

M* + M
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Exciplexes :‘excited complex
D = donor
A = acceptor

D'+ A=21(DA)’

'A* + D= (DA’




Excitation energy transfer

D"+A—=D+A"

m. Abs. Em,
Sp-ectral overlap

Radiative energy transfer:
edistances (D, A) larger than A
edoes not require any interaction between D and A

edepends on the spectral overlap and on the concentration
D* — D + hy

Absorbance,
fluorescence
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Non-radiative energy transfer:

«distances (80-100 A) less than the wavelength
erequires interactions between D and A (dipole-dipole)
ephotosynthesis



eResonance energy transfer can occur when the donor and acceptor molecules are less than
100 A of one another (preferable 20-50 A)

|Isolated donor
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> Vibrational relaxation

Fluorescence resonance %
energy transfer (FRET) Db B

FRET

Db+Aa== Da +Ab Excitation

Calculate the rate at which the state of D,A changes from

¥p, Vs, to ¥p ¥y, .

< Da ~ Dbonor Acceptx;r_ Aa
The rate of energy transfer  k(v) oc [{¥p Wy, |V|¥p, POl (16)

V= (1o pa)/R® = 3(pp - R)R - py)/R°
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K geometry parameter
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Absorption takes place at a single frequency V. K‘Fﬁbl“ﬁs‘qjﬁ >‘2 oC g4V~ 1
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FRET

The energy transfer rate:

k(v) oc (k 2.-""Rﬁ}{ Op/Tp)eY *

Fluorescence of D and absorption of A occur over a range of freanenriec:

ky oc (Kzf“:Rﬁ){(bnx’:TD) b[‘EA(‘!}fD(VJv_4d1’ = (NEQSD.-HRGTDJJ

In a fluid medium, the true: interaction potential is V/n?
n is the refractive index
2
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 The distance at which 50% energy transfer takes place

8.79 x 10~ - cm®

Forster radius

Normalized intensity
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Emission of donor  Absorption of acceptor

4 Spectral overlap
overlap integral

= spectral overlaps 3

(17)

Wavelength

The energy transfer rate: k= (R,/R)® 15} (18)

FRET efficiency E: E =k;/ (ki+ 15) (19)
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FRET measures distances in proteins




Fluorescence microscopy
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lateral resolution (Rayleigh):
200 - 300 nm for visible radiation
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axial resolution: 700 nm



Fluorescence confocal microscopy: 3D images

Detector

Confocal Pinhole
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Advantage of confocal microscopy:
optical sectioning: 3D images of specimens

Disadvantage:
higher amount of photobleaching

Objective Lens

Focal Plane

Ot of tocus lighit



Applications

Paramecium:
thousands of cilia and internal microtubular structures.

Projection of 25 optical sections
of a triple-labeled rat islet of Langerhans,
acquired with a krypton/argon laser.



Two-photon excitation fluorescence microscopy: 3D images
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1-photon abs 2-photon abs

The cross-sections for two-photon absorption: 10°° cm# s photon-1 molecule! (rhodamine B).
Used lasers:Titan:Sapphire laser (TiSa)



Two-photon excitation fluorescence microscopy: 3D images
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Advantages:

*no out-of-focus photobleaching

eexcitation beam is not attenuated by out-of-focus absorption,( increased penetration depth)
Disadvantage:

e|lower spatial resolution then in confocal imaging (longer wavelength!)



Stimulated emission depletition (STED)
microscopy: resolution beyond the Rayleigh limit

STED
S1 40 ps
lex
200 fs X
S, =
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intensity at which the fractional population of the
excited state is depleted to 1/e
30 MW cm2in the visible range

The fluorescence is confined spatially
to sub-diffraction dimensions

48 nm bead

Confocal




Laser induced fluorescence
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The number of photons absorbed per second along the path

length Ax: n, = Ninp o Ax

n, : number of incident laser photons per second
o, absorption cross section per molecule
Ni : density of molecules in the absorbing state i

The number of fluorescence photons emitted per second from the excited

level: ng1 = NiAp = nanyg

Nk quantum efficiency of the excited state

The number n,,, of photoelectrons counted per second:
Npe = NaNiiphd = (N;ojnr, AX)ng1pnd

d=d2/4m
M,n quantum efficiency of the photocathode

Ex: (0.2)

=02 §5=01 d2=04n mpe=100counts/s ns=1

ng=>35 x10° /s

laser power of 1 W at the wavelength A = 500nm p; =3 x10'® /s

(f(}_ ftrans)/fl} =10~ 13



Single molecule detection

spontaneous lifetime t: 10¢ s
travel time T through the laser beam: 10 s
excitation-fluorescence cycles n = T/z; 500 photons / molec =) Single molecule detection
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