Pathways of decay of excited singlet states

Quenching

Determination of the lifetime of excited state (
$$\tau_0$$
) $A + hv \rightarrow A^*$ (absorption) $A^* \rightarrow A$ (emission)

O₂: well-known quencher of fluorescence

Ground state: ${}^{3}\Sigma$ Excited singlet states: ${}^{1}\Delta$ and ${}^{1}\Sigma$ ${}^{1}A^{*} + {}^{3}O_{2}({}^{3}\Sigma) \rightarrow {}^{1}A + {}^{1}O_{2}({}^{1}\Delta)$ or ${}^{3}A^{*} + {}^{3}O_{2}({}^{3}\Sigma) \rightarrow {}^{3}A + {}^{1}O_{2}({}^{1}\Delta)$

Excimer or Exciplex formation

Excimers :'excited dimer'

Formation by collision: ${}^{1}M^{*} + {}^{1}M \rightleftharpoons {}^{1}(MM)^{*}$

excitation energy is delocalized

Excitation energy transfer

$$D^* + A \rightarrow D + A^*$$

Radiative energy transfer:

distances (D, A) larger than λ
does not require any interaction between D and A
depends on the spectral overlap and on the concentration

$$D^* \to D + hv$$
$$hv + A \to A^*$$

Non-radiative energy transfer:

distances (80-100 Å) less than the wavelength
requires interactions between D and A (dipole-dipole)
photosynthesis

•Resonance energy transfer can occur when the donor and acceptor molecules are less than 100 Å of one another (preferable 20-50 Å)

Absorption takes place at a single frequency v:

 $|\langle \Psi_{\mathbf{A}_{b}}| \mathbf{\mu}_{\mathbf{A}} | \Psi_{\mathbf{A}_{a}} \rangle|^{2} \propto \varepsilon_{\mathbf{A}} v^{-1}$

$$D_{ab} \propto v^{-3} A_{ba} = v^{-3} \tau_{\rm S}^{-1}$$

FRET

The energy transfer rate: $k_{
m T}(v) \propto (\kappa^2/R^6) (\phi_{
m D}/ au_{
m D}) arepsilon_{
m A} v^{-4}$

Fluorescence of D and absorption of A occur over a range of frequencies:

$$k_{\rm T} \propto (\kappa^2/R^6)(\phi_{\rm D}/\tau_{\rm D}) \int \varepsilon_{\rm A}(v) f_{\rm D}(v) v^{-4} dv = (\kappa^2 \phi_{\rm D}/R^6 \tau_{\rm D}) J$$
In a fluid medium, the true: interaction potential is V/n²
n is the refractive index
Förster radius $R_0^6 = 8.79 \times 10^{-5} \cdot \frac{\Phi_D \cdot \kappa^2 \cdot J}{n^4}$ cm⁶
 (17)
The distance at which 50% energy transfer takes place
The energy transfer rate: $k_{\rm T} = (R_0/R)^6 \tau_D^{-1}$ (18)
FRET efficiency E: $E = k_{\rm T}/(k_{\rm T} + \tau_D^{-1})$ (19)
$$E = \frac{R_0^6}{R_0^6 + R^6}$$
 (20)

Fluorescence microscopy

axial resolution: 700 nm

Fluorescence confocal microscopy: 3D images

Applications

Projection of 25 optical sections of a triple-labeled rat islet of Langerhans, acquired with a krypton/argon laser.

Paramecium: thousands of cilia and internal microtubular structures.

Two-photon excitation fluorescence microscopy: 3D images

The cross-sections for two-photon absorption: 10⁻⁵⁰ cm⁴ s photon⁻1 molecule⁻¹ (rhodamine B). Used lasers: *Titan: Sapphire laser (TiSa)*

Two-photon excitation fluorescence microscopy: 3D images

Advantages:

- •no out-of-focus photobleaching
- •excitation beam is not attenuated by out-of-focus absorption, (increased penetration depth) Disadvantage:
- •lower spatial resolution then in confocal imaging (longer wavelength!)

Stimulated emission depletition (STED) microscopy: resolution beyond the Rayleigh limit

The fluorescence is confined spatially to sub-diffraction dimensions

 I_{sat} : intensity at which the fractional population of the excited state is depleted to 1/e 30 MW cm⁻² in the visible range

r

 $2n\sin\alpha\sqrt{1+I/I_{\text{sat}}}$

STED

lex

 $\Delta x \approx$

Laser induced fluorescence

The number of photons absorbed per second along the path Collisions length Δx : $n_{\rm a} = N_i n_{\rm L} \sigma_{ik} \Delta x$ lk) n_1 : number of incident laser photons per second Fluores- σ_{ik} : absorption cross section per molecule cence Ni : density of molecules in the absorbing state i Β_{ik}σ ۴m The number of fluorescence photons emitted per second from the excited 1**m**) level: $n_{\rm Fl} = N_k A_k = n_2 n_k$ η_{κ} quantum efficiency of the excited state $|i\rangle$ The number n_{pe} of photoelectrons counted per second: parabolic reflector $n_{\rm pe} = n_{\rm a} \eta_k \eta_{\rm ph} \delta = (N_i \sigma_{ik} n_{\rm L} \Delta x) \eta_k \eta_{\rm ph} \delta$ laser $\delta = d\Omega/4\pi$ η_{nh} quantum efficiency of the photocathode molecular (0.2)beam Ex: $\eta_{\rm ph} = 0.2$ $\delta = 0.1$ d $\Omega = 0.4 \pi$ $n_{\rm pe} = 100 \, {\rm counts/s}$ $\eta_k = 1$ $n_{\rm a} = 5 \times 10^3 \, / {\rm s}$ laser power of 1 W at the wavelength $\lambda = 500 \,\mathrm{nm}$ $n_{\rm L} = 3 \times 10^{18} \,\mathrm{/s}$ $(I_0 - I_{\rm trans}) / I_0 = 10^{-15}$ PМ

Single molecule detection

spontaneous lifetime τ : $10^{-8} s$ travel time T through the laser beam: $10^{-5} s$ excitation-fluorescence cycles $n = T/\tau$: 500 photons / molec

single molecule detection

