Van der Waals Forces between Polar Molecules

Van der Waals force:

• the orientation force: Keesom interactions of permanent dipoles

•the induction force: Debye interactions: a permanent dipole induces a dipole in another nonpolar molecule

• the dispersion force: London dispersion interactions between transient dipoles of nonpolar but polarizable molecules

Only the dispersion interaction contributes if both molecules are nonpolar.

For two dissimilar polar molecules:

$$w_{\rm VDW}(r) = -C_{\rm VDW}/r^6 = -[C_{\rm ind} + C_{\rm orient} + C_{\rm disp}]/r^6$$

= $-\left[(u_1^2\alpha_{02} + u_2^2\alpha_{01}) + \frac{u_1^2u_2^2}{3kT} + \frac{3\alpha_{01}\alpha_{02}h\nu_1\nu_2}{2(\nu_1 + \nu_2)}\right]/(4\pi\varepsilon_0)^2 r^6$ (18)

 $-\frac{C_{\text{Debye}}}{r^6}$

Similar Molecules				Van der Waals Energy Coefficients C (10 ⁻⁷⁹ J m ⁶) Total VDW Energy C _{VDW}					
Interacting Molecules	Electronic Polarizability $\frac{\alpha_0}{4\pi\epsilon_0}$ (10 ⁻³⁰ m ³)	Permanent Dipole Moment u (D) ^a	Ionization Potential $I = hv_1 (eV)^b$	$\frac{\frac{C_{ind}}{2u^2\alpha_0}}{\left(4\pi\varepsilon_0\right)^2}$	$\frac{C_{\text{orient}}}{u^4} \frac{u^4}{3kT(4\pi\varepsilon_0)^2}$	$\frac{C_{\rm disp}}{\frac{3\alpha_0^2h\nu_1}{4(4\pi\varepsilon_0)^2}}$	Theoretical Eq. (6.17)	From Gas Law Eq. (6.14)	Dispersion Energy Contribution to Total (Theoretical) (%)
Ne-Ne	0.39	0	21.6	0	0	4	4	4	100
CH ₄ -CH ₄	2.60	0	12.6	0	0	102	102	101	100
нсі—нсі	2.63	1.08	12.7	6	11	106	123	157	86
HBr—HBr	3.61	0.78	11.6	4	3	182	189	207	96
ні—ні	5.44	0.38	10.4	2	0.2	370	372 🗸 🗲	350	99
CH₃CI–CH₃CI	4.56	1.87	11.3	32	101	282	415	509	68
NH ₃ -NH ₃	2.26	1.47	10.2	10	38	63	111	162	57
H ₂ O-H ₂ O	1.48	1.85	12.6	10	96	33	139	175	24
				$u_1^2 \alpha_{02} + u_2^2 \alpha_{01}$	$u_1^2 u_2^2$	$3\alpha_{01}\alpha_{02}h\nu_1\nu_2$			
Dissimilar Mol	ecules			$(4\pi\varepsilon_0)^2$	$3kT(4\pi\varepsilon_0)^2$	$2(4\pi\epsilon_0)^2(\nu_1+\nu_2)$	Ì		
Ne-CH ₄				0	0	19	19 ^c		100
HCI—HI				7	1	197	205 🗲		96
H ₂ O–Ne				1	0	11	12		92
H ₂ O-CH ₄				9	0	58	67	· · · · · · · · · · · · · · · · · · ·	87

 Table 6.3
 Induction, Orientation, and Dispersion Free Energy Contributions to the Total Van der Waals Energy
 in a Vacuum for Various Pairs of Molecules at 293K

^b1 eV = 1.602×10^{-19} J.

^cThis approximate value may be compared with the ab initio calculation by Fowler et al., (1989) that gives 23×10^{-79} J m⁶.

hydrophobic effect

Van der Waals Forces between Polar **Molecules**

 $w_{\rm VDW}(r) = -C_{\rm VDW}/r^6$

(18) has limited validity:

• should consider quadrupolar and higher-order multipole interactions

• in rigid media the dipole–dipole interaction is proportional to $1/r^3$

• should consider the interaction of three (or more) molecules

should consider the interaction of three (or more) molecules

$$V = -\frac{C_{6}}{r_{AB}^{6}} - \frac{C_{6}}{r_{BC}^{6}} - \frac{C_{6}}{r_{CA}^{6}} + \frac{C'}{(r_{AB}r_{BC}r_{CA})^{3}}$$

$$A = \frac{3}{4}\alpha' C_{6}$$

$$M = -\frac{C_{6}}{r_{AB}^{6}} - \frac{C_{6}}{r_{CA}^{6}} + \frac{C'}{(r_{AB}r_{BC}r_{CA})^{3}}$$

$$A = -\frac{3}{4}\alpha' C_{6}$$

$$(19)$$

(18)

Van der Waals Forces between Polar Molecules

•molecules are squeezed together: the nuclear and electronic repulsions dominate the attractive forces

Retardation effects of dispersion forces

2R/ c >> (Δ E/h)⁻¹ dispersion interaction is weakened R ~ 100 nm,

$$w(r) \approx -\left(\frac{23\hbar c}{4\pi}\right) \frac{\alpha'_{\rm A} \alpha'_{\rm B}}{R^7}$$

2R/ c << (Δ E/h)⁻¹ the correlation of the dipoles is perfect

van der Waals molecules: He₂, Ne₂, Ar₂, XeCl, ArF, NaAr, Ar-CO dimers(NH₃)₂, (C₆H₆)₂, (C₆ H₆)Ar.

Molecule	Bond type	$D_{\rm e}/{\rm cm}^{-1}$	$D_{\rm e}$ / eV	R _e /Å
He ₂	van der Waals	7.6	9 × 10 ⁻⁴	3.0
Ne ₂	van der Waals	30	3.6×10^{-3}	3.1
ArCO	van der Waals	110	1.4×10^{-2}	3.3
$(NH_3)_2$	van der Waals &	1000	0.12	3.4
CO	covalent	90500	11.2	1.1

bond energy: three orders of magnitude larger

van der Waals molecules often exhibit nonrigid structures: can alter their nuclear framework periodically.

There exist several isomers with slightly different ground-state energies

(NH₃) ₂

the rectangular structure has the largest binding energy

 $(O_2)_{2}$

Large mean internuclear distance: large moments of inertia are large, and small rotational constants: low temperatures are needed to resolve the closely spaced rotational lines

The Unique Properties of Water

- high melting and boiling points
- density maximum at 4°C exhibited by liquid water
- very low compressibility
- •unusual solubility properties both as a solute and as a solvent

These properties of water point to the existence of an intermolecular interaction that is stronger than that expected for ordinary, even highly polar, liquids.

The Unique Properties of Water: Cohesion

Surface Tension

- Attraction between particles of the same substance (why water is attracted to itself)
- Results in Surface tension (a measure of the strength of water's surface)
- Produces a surface film on water that allows insects to walk on the surface of water

The Unique Properties of Water: Adhesion

- Attraction between two different substances.
- Capillary action-water molecules will "tow" each other along when in a thin glass tube.
- Example: transpiration process which plants and trees remove water from the soil, and paper towels soak up water.

Water Molecule

Watermolecule is very polar, and gets even more polar in the condensed phase.

Condensed Water

The proton conductivity and mobility in ice is higher than in the liquid: the ice lattice affords pathways for the movement of chargeshydrogen bonding network .

Hydrogen bond

A—H···B

water

oxygen and amide

 $\psi = c_{\rm A}\psi_{\rm A} + c_{\rm H}\psi_{\rm H} + c_{\rm B}\psi_{\rm B}$

Hydrogen bond

Hydrogen bond

• The shorter the H-bond, the stronger the bond; typical distances between donor and acceptor are 2.6 to 3.1 Å (depends on the involved atoms and their charge).

bond	d[Å]
О-Н ••• О	2.7
О-Н ••• О ⁻	2.6
O-H ••• N	2.9
N-H ••• O	3.0
N+-H ••• O	2.9
N-H ••• N	3.1

The hydrogen bonds are shorter in ice (2.7 Å) than between isolated H2O dimers (2.82 Å) because of cooperativity.

Protonated Water Molecules

Protonated Water Molecules

The

de Broglie wavelength of the proton is 1.5 A°: \sim distances of proton transfer reactions: tunneling ?

Hydrophobic interaction

- electrostatic, H-bond and van der Waals interactions between molecules in an aqueous environment are competed by the interactions between molecules and the water surrounding them.
- but: nonpolar molecules make unfavorable interactions with water.
- <u>hydrophobic interaction</u>: the preference of nonpolar molecules for nonaqueous environments

n-butane (C₄H₁₀) $\Delta G_{\text{transfer}} = \Delta H - T\Delta S = -4.3 + 28.7 = +24.5 \text{ kJ mol}^{-1}.$

- driven by entropy: interaction of hydrophobic (nonpolar) residues with water is less favorable as water –water interactions
- major factor in the stabilities of proteins

The "hydrophobic" effect

- result of the unfavorable change in entropy
- reorientation or restructuring of the water molecules so they can participate in Hbond formation
- water-ordering effect