Springe direkt zu Inhalt

Physics Colloquium & TRR 227: Prof. Dr. Kai Rossnagel – Soft X-ray Spectroscopy of Quantum Materials

Feb 10, 2023 | 03:00 PM c.t. - 05:00 PM
Prof. Dr. Kai Rossnagel

Prof. Dr. Kai Rossnagel
Image Credit: DESY

Physics Colloquium 2022: Soft X-ray Spectroscopy of Quantum Materials

Physics Colloquium 2022: Soft X-ray Spectroscopy of Quantum Materials

Physics Colloquium 2022: Soft X-ray Spectroscopy of Quantum Materials

Physics Colloquium 2022: Soft X-ray Spectroscopy of Quantum Materials

Institute of Experimental and Applied Physics and KiNSIS, Kiel Universityl / Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY

We host this colloquium jointly with the TRR 227 "Ultrafast Spin Dynamics".

Abstract

Without materials there is nothing. Without quantum materials there is nothing interesting. Quantum materials express our desire to find and explain new physical phenomena. In these materials, it is the complexity of the quantum mechanical interactions of the constituent electrons that gives rise to qualitatively new and unexpected behavior, offering a research field of inexhaustible depth while promising great technological potential.

To see how quantum materials work, we need to go beyond electrical transport measurements, which often provide the first clues to new electronic phenomena, and use spectroscopic tools that can provide direct snapshots of electron behavior in the machine room of materials. The most powerful toolbox in this regard is soft x-ray spectroscopy, and the single most powerful tool is angle-resolved photoelectron spectroscopy (ARPES), which has become a mainstay in imaging the momentum-dependent electronic structure of materials. Excitingly, ARPES has recently been transformed into a true in operando technique using nanofocused as well as ultrashort-pulsed soft x-rays to directly probe nonequilibrium electronic functions in materials and devices on relevant nanometer length and femtosecond time scales, respectively.

Here, I will give an introduction to electron behavior, quantum materials, and the novel possibilities of nanoscopic and femtostroboscopic imaging of electronic structures. The focus will be on results obtained with quasi-2D quantum materials from the transition-metal dichalcogenide family.  

Time & Location

Feb 10, 2023 | 03:00 PM c.t. - 05:00 PM

Lecture hall A (room 1.3.14), Department of Physics, Arnimallee 14, 14195 Berlin

Further Information

Host: Prof. Dr. Martin Weinelt

Keywords

  • angle-resolved photoelectron spectroscopy
  • ARPES
  • DESY
  • Kai Rossnagel
  • KiNSIS
  • Physics Colloquium
  • quantum materials
  • quasi-2D quantum materials
  • research center
  • soft x-ray
  • spectroscopic tools
  • ultrafast physics
  • ultrafast spin dynamics
  • X-ray Spectroscopy