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Basics of Data Analysis
Measurement uncertainties / Error analysis

Slides developed and adapted by

Kirill Bolotin, Martin Weinelt, and Niclas Müller

Master Laboratory Course, SS 2025
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Literature

• P. R. Bevington, and D. K. Robinson, “Data Reduction and 
Error Analysis for the Physical Sciences” 

• P. Möhrke, and B.-U. Runge, “Arbeiten mit Messdaten”

• “Guide to uncertainty propagation and Error analysis” Stony Brook U.

• “A beginner guide to uncertainty of measurement” by Stephanie Bell

• Slides and python code examples will be uploaded to website
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Basics of Data Analysis
Measurement uncertainties / Error analysis

based on

• P. Möhrke, and B.-U. Runge, “Arbeiten mit Messdaten”
• Check out also: T. Kampfrath, Grundlagen der Mess- und 

Labortechnik, Fri 2-4pm, Large Lect Hall

• P. R. Bevington, and D. K. Robinson, “Data Reduction 
and Error Analysis for the Physical Sciences” 

Always report measurement results with uncertainties!

• Slides by Kirill Bolotin and Martin Weinelt

Master Laboratory Course, WS 2024/25
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Errors and uncertainties in experimental data

• Environmental

• Instrumental

• Observational

• Theoretical 

Instrument accuracy limit 
Fluctuating  signal 

Misused instrument

Wind, magnetic field, temperature

Error in equation
Effect not accounted for

Observable
conversion DAQ

System

Detector
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Outline

 Types of errors and uncertainties

 Characterization of distributions

 Probability distributions

 Uncertainty analysis

 How to report and compare results

 Data fitting
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Sources of uncertainty

Systematic error

- Reproducible inaccuracy

- Faulty instrumentation

Random fluctuations

- Statistical variations
- Limited precision
- Fluctuating results

 Repeating experiments required!

 Statistical analysis helps! Statistical analysis DOES NOT help!

 Improving measurement equipment
 Getting rid of requires physics understanding!

 Instrument calibration!

 Goal: Estimate uncertainty to extract maximum of information!

- Neglected effect
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Sources of uncertainty

accurate
but imprecise

precise
but inaccurate

accurate and precise

Accuracy:    a measure how close a result is to the true value

Precision:    a measure how well a result has been determined
without reference to the true value

Accuracy is mostly related to systematic deviations, precision mostly to statistics.
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Work flow

experimental 
data

systematic 
deviation

statistical 
fluctuation

known systematic 
deviation

unknown systematic 
deviation

calibration, 
correction

remaining 
deviation

experimental
result uncertainty

modified from M. Hemla, QZ. 41, 1156 (1996)
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What follows deals (mostly) with statistical uncertainties!

How to make a more precise measurement?
How to estimate the measurement uncertainty?
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Characterization of a distribution

Single measurements xi group around the “true” value µ

For an infinite number of measurements:
The distribution yields the parent distribution of xi

Mean of the parent distribution

Variance of the parent distribution (standard deviation σ )
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Characterization of a distribution

Continuous distribution

Discrete distribution

Normalization

Transfer of events xi into histogram:
Probability/frequency P(xj) of possible values xj

Problem: Parent distribution is in most cases not known!
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Characterization of a sample distribution

For finite number of measurements:
The measurements are sample distributions
of the parent distribution

Mean of a sample distribution:

Standard uncertainty of a sample distribution
(standard deviation of the mean) 

Variance of a sample distribution
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Probability distributions

Binomial distribution

Poisson distribution

Gaussian distribution

Lorentzian distribution

Voigt = convolution of Lorentzian and Gaussian

What is the propobability of observing x in an experiment. 

To answer this question we need to understand the parent distribution. Most common are:
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Binomial distribution

Example: toss n coins, PB = probability to find x coins with head up
p:         probablity head up
1 - p:    probability head down (= tail up)
here: p = ½

Example: roll n dices,  find x dices with a certain 
number,         p(x) = 1/6,  (1 – p) = 5/6 

Probability of observing in a random experiment x successes out of n tries 
when the probability of success is p
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Binomial distribution (Dice rolling)

Probability of observing in a random experiment x successes
out of n tries when the probability of success is p

Variance:

Mean:

p = 1/6 
asymmetric

10 dices, p = 1/6 , µ(6) = 10/6=1.67, σ2 = 50/36, σ = 1.17  

Example: Probability of rolling a “6” in 10 attempts 
Toss a coin
p = 0.5
symmetric
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For large n and small steps ∆x, evaluation becomes impractical !

n = 10
P = 0.5
µ = 5
σ = 10/4
x = 5 ± 1.6  (32 %)

n = 100
P = 0.5
µ = 50
σ = 100/4
x = 50 ± 5 (10 %) 
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For small probabilities of success,            , the Binomial distribution can be approximated by

the Poisson distribution:  
Poisson distribution
only depends on µ

Mean

Variance

0.8

0.6

0.4

0.2

0.0

P(
x)

20151050
 x

µ=0.1

1

2
3 4 6 8 10 12 15

Poisson distribution: Counting statistics



Data analysis 20

Outline

 Recap of previous seminar

 Probability distribution: Gaussian and Lorentzian

 Error propagation

 How to report and present results

 Data fitting
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Poisson vs. Gaussian distribution

For µ >10, the Poisson distribution (+) is well approximated by a Gaussian distribution.

µ = 10
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Gaussian distribution

“There are several derivations of the Gaussian distribution from first principles,
none of them as convincing as the fact that the distribution is reasonable, that it has a 
fairly simple analytic form, and that it is accepted by convention and experimentation to 
be the most likely distribution for most experiments. 

In addition, it has the satisfying characteristic that the most probable estimate of the 
mean μ from a random sample of observations x is the average of those observations x.”

For               the Poisson distribution is nicely approximated by a Gaussian distribution.  

(From: P. R. Bevington, and D. K. Robinson, “Data Reduction and Error Analysis for the Physical Sciences”)

Examples:

Brownian motion

Moody et al. 
Nat. Commun. 
6, 8315 (2015)Inhomo-

geneous
broadening
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Gaussian distribution

Probability of one measurement being within [-σ;+σ]

75.8%
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Lorentzian distribution (Cauchy distribution)

Lorentzian distribution:
Fourier transform of exponential decay

Width of frequency distribution is
related to damping:

• Finite lifetime of excited states

• Lineshape of laser cavity modes 
due to losses (HeNe laser, Fabry-Perot)

Standard deviation not defined,
because of strong “wings”. Tr

an
sm

is
si

on

Frequency
Thorlabs: Fabry-Perot tutorial
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Damped oscillator (light-wave emission, dipole radiation)
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Examples of Lorentz vs Gauss Line Shape

Ma16: Coherent phonons

Fit 
Lorentz 

peak

Moody et al. Nat. Commun. 6, 8315 (2015)

Fit 
Gauss or 

Voigt

Ma9: Photoluminescence

Molesky et al. 
J. Chem. Educ.
100, 342 (2023)
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Outline

 Recap of previous seminar

 Probability distribution: Gaussian and Lorentzian

 Error propagation

 How to report and present results

 Data fitting
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Models

 Test model by systematically varying parameters

 Measuring f(u,v, …; a,b,…)
Determine model parameters a,b,… by a fit

Functional dependences of quantities ∆l D g z ∆t

m

Ekin

v

𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 =
1
2𝑚𝑚𝑣𝑣

2

measured 
quantities 

model 
function 

result

 What is the uncertainty of the result?



Data analysis 29

Models

a.) Calculate individual  form histogram

b.) Calculate means and take most probable values 
 Error propagation?

Data evaluation procedures: 

measured 
quantities 

model 
function 

result

 If 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 belong together

 If 𝑢𝑢𝑖𝑖 and 𝑣𝑣𝑖𝑖 from independent measurements
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Propagation of uncertainty

Taylor expansion

(derivatives evaluated for variables fixed at mean)

For measured quantities u, v, …

Assuming that the deviations in ui, vi,… are small, 
deviations in xi can be expressed as

u

x

u ui

x
xi

Variance:
i i
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Propagation of uncertainty

Covariance: characterizing the correlation 
between deviations in different variables

 can be positive or negative

z

𝑡𝑡 𝑧𝑧0, 𝑡𝑡0 =
2 𝑧𝑧 + 𝑧𝑧0

𝑔𝑔
+ 𝑡𝑡0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧0

< 0,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡0

> 0

 vanishes for uncorrelated quantities 
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Propagation of standard uncertainty

for uncorrelated errors
because

Often it is sufficient to use just the biggest term!

= 0
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Propagation of uncertainty: examples

Resistance measurement:

Measure current I and voltage U on resistor to determine resistance R

𝑅𝑅 =
𝑈𝑈
𝐼𝐼

𝜎𝜎𝑅𝑅 ≈ 𝜎𝜎𝑈𝑈2
1
𝐼𝐼

2

+ 𝜎𝜎𝐼𝐼2
𝑈𝑈
𝐼𝐼2

2 U0

I

U
R

Conversion of wavelength to energy:

𝐸𝐸 eV =
ℎ𝑐𝑐
𝜆𝜆
≈

1240
𝜆𝜆[nm]

eV 𝜆𝜆 = 635 ± 6 nm

→ 𝐸𝐸 = ? ± ? eV
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Outline

 Recap of previous seminar

 Probability distribution: Gaussian and Lorentzian

 Error propagation

 How to report and present results

 Data fitting
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𝝌𝝌2 test

Comparing the assumed probability distribution function P to a measured histogram h(xj):

= 3.27

= 9 – 3 = 6

Reduced chi-squared: 

= 0.55

Gaussian:

Expected for pure counting statistics:

# data/bins # constraints
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Least-squares fit to a line

Assuming Gaussian uncertainties, the most probable 
parameters a, b are obtained at minimum of

Data set of (xi, yi) with uncertainties σyi = σi

Fit function:

2.5

2.0

1.5

1.0

0.5

Vo
lta

ge
 U

 (V
)

80604020
Distance x (cm)

Reduced chi-square 

with (here       = 2)

≈ 𝜈𝜈

≈ 1

good fit
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𝝌𝝌2 vs R2

Reduced chi-square 

Chi-square R squared
(coefficient of determination)

Mean of data

Fit function

≈ 1

≈ 1 for
good fit

 Only from residuals

 Measure for the 
variation of the data
compared to model

 Takes uncertainties into 
account

 Test whether data follow 
particular distribution
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Least-squares fit to a line: Linear regression

Analytical solution:

with

Variance of fit parameters:

Estimation of uniform variance
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Example 1: Linear fit

σU = 0.05 V
χ2 = 3.21    for N=9,  ν=7

 χ2 is too small. 
 Standard deviation was overestimated

Potential drop along a wire

Note: Standard deviation concerns only the random errors.

Total uncertainty due to systematic errors might be larger!

R2 = 0.994   good fit

= 0.033 V

Corrected estimate:
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Example 2: Linearize data

Radioactive source at distance d

χ2 = 9.3    for N=10,  ν=8

 Estimation of σn fits well.

Fit allows separation of
signal and background

R2 = 0.998
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Non-linear fitting

If fitting function is non-linear in parameters a, b, …

 try to transform to linear fit

 numerical least-mean-squares fit

“A fit can never be better than your model function.”

Fit with
one peak
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Outline

 Recap of previous seminar

 Probability distribution: Gaussian and Lorentzian

 Error propagation

 How to report and present results

 Data fitting
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Instrumental

Fluctuations in reading of physical instrument
(limited instrumental precision)

Often independent of the actual value
e.g. length, mass, voltage, current…

 Refer to instrumentation manuals or 
other test measurements 
(external estimate)

 Estimate of standard deviation from 
repeated measurements 
(internal estimate)

Counting experiments:
x represents the count rate in a detector

Statistical fluctuations for finite sample

 Uncertainty can be deduced from data

 Poisson statistics!

Statistical uncertainties
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How to report measurement results and uncertainties

• for N = 1 measurement, report instrumental uncertainty

• for N > 1 measurement, report

• Report uncertainty with 2 significant digits if intermediate result, and 1 digit for final result.

• Report result with same precision as uncertainty.

with

• Indicate estimated systematic uncertainty in addition.

(or from fit)
• For fit also report reduced chi-squared and R^2 value.
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How to state measurement results and uncertainties

Exercise: State the quantity with uncertainty – convert to scientific notation if helpful

367134 C                      783 C

quantity standard uncertainty

632.497 nm                  0.153 nm

50.003 m                      0.1m

(632.5   ± 0.2) nm

(50.0 ± 0.1) m

53612 s                        300 s (5.36 ± 0.03)*104 s

(3.671 ± 0.008)*105 C
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How to plot uncertainties of measured data

2𝜎𝜎𝑥̅𝑥

Error bar:

For small data set:

 Show error bars
 Error bars show two 

standard deviations

For large data set:

 Plot uncertainty of fit
 Or use binning
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Take home…

• Keep good experimental records
• Try to measure in several ways
• Calibrate instruments, read their manuals
• Check rounding errors
• Be mindful of largest uncertainty source
• The uncertainty of a fit result does not consider systematic deviations
• Never report measurement results without uncertainties
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Literature

• P. R. Bevington, and D. K. Robinson, “Data Reduction and 
Error Analysis for the Physical Sciences” 

• P. Möhrke, and B.-U. Runge, “Arbeiten mit Messdaten”

• “Guide to uncertainty propagation and Error analysis” Stony Brook U.

• “A beginner guide to uncertainty of measurement” by Stephanie Bell

• Slides and python code examples will be uploaded to website
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Examples with Python
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