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Basics of Data Analysis

Measurement uncertainties / Error analysis

Slides developed and adapted by

Kirill Bolotin, Martin Weinelt, and Niclas Muller

Data analysis

Freie Universitat |



Literature

P. R. Bevington, and D. K. Robinson, “Data Reduction and
Error Analysis for the Physical Sciences”

« P. Mohrke, and B.-U. Runge, “Arbeiten mit Messdaten”

« “Guide to uncertainty propagation and Error analysis” Stony Brook U.

« “A beginner guide to uncertainty of measurement’ by Stephanie Bell

« Slides and python code examples will be uploaded to website
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Master Laboratory Course, WS 2024/25

Basics of Data Analysis

Measurement uncertainties / Error analysis

based on

Slides by Kirill Bolotin and Martin Weinelt

P. R. Bevington, and D. K. Robinson, “Data Reduction
and Error Analysis for the Physical Sciences”

P. Mohrke, and B.-U. Runge, “Arbeiten mit Messdaten”
Check out also: T. Kampfrath, Grundlagen der Mess- und

Labortechnik, Fri 2-4pm, Large Lect Hall

Always report measurement results with uncertainties!

Data analysis
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Errors and uncertainties in experimental data

conversion ( DAQW)
Observable Detector =1
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Wind, magnetic field, temperature

Environmental o
Instrument accuracy limit

Instrumental Fluctuating signal

Observational

Misused instrument

Theoretical
Error in equation

Effect not accounted for
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Outline

Data analysis

Types of errors and uncertainties
Characterization of distributions

Probability distributions

Uncertainty analysis
How to report and compare results
Data fitting
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Sources of uncertainty

Systematic error Random fluctuations

- Reproducible inaccuracy - Statistical variations

- Faulty instrumentation - Limited precision

- Neg|ected effect - FIUCtuating results

» Getting rid of requires physics understanding! » Repeating experiments required!

» Improving measurement equipment

» Instrument calibration!

> Statistical analysis DOES NOT help! » Statistical analysis helps!

» Goal: Estimate uncertainty to extract maximum of information!

Data analysis



Sources of uncertainty

Accuracy. a measure how close a result is to the true value

Precision: a measure how well a result has been determined
without reference to the true value

%

accurate precise accurate and precise
but imprecise but inaccurate

S
V)

%

Accuracy is mostly related to systematic deviations, precision mostly to statistics.

Data analysis



Work flow

experimental
data
systematlc statlstlcal
deviation fluctuation
known systematlc unknown systematlc
deV|at|on deviation

/

calibration, remalnlng
correction deviation

experimental
result

uncertainty }

modified from M. Hemla, QZ. 41, 1156 (1996)
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Data analysis

What follows deals (mostly) with statistical uncertainties!

How to make a more precise measurement?
How to estimate the measurement uncertainty?
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Characterization of a distribution

Single measurements x; group around the “true” value u 1.05 7

For an infinite number of measurements: -
The distribution yields the parent distribution of x; 1'00_._.,.:‘

0.95

| | | |
Mean of the parentdlstrlbutlon 0 2000 4000 6000 8000

sample i
= lim — E T;
H N —00 N ’

Variance of the parent distribution (standard deviation ¢ )
N

1
o = lim — Z(azz — )

N—oo [V :
1=1

Data analysis
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Characterization of a distribution

Transfer of events x; into histogram:
Probability/frequency P(x;) of possible values x;

Discrete distribution

N
, 1
p=(x) ZJ&%ONE;%:Z%P(%)
i= J

Continuous distribution Normalization
400 00
o= / ' P(x")da' P(z")da' =1
— 00 —00

Problem: Parent distribution is in most cases not known!

Data analysis

1.05 -

> 1.00 B2

0.95

| | | |
0 2000 4000 6000 8000
sample i

Probability P(x)

10

| T : : T | T : : T |
0.95 1.00 1.05
Value x
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Characterization of a sample distribution

For finite number of measurements:
The measurements are sample distributions
of the parent distribution

Mean of a sample distribution:

Variance of a sample distribution §° =

Standard uncertainty of a sample distribution
(standard deviation of the mean)

Data analysis

0000 0 =0.0100

017 s =0.0111

1
N(N —1)

(zi — T)

1=1
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Probability distributions

What is the propobability of observing x in an experiment.

To answer this question we need to understand the parent distribution. Most common are:

Binomial distribution

Poisson distribution

Gaussian distribution

Lorentzian distribution

Pg(x;n,p) = (2)p*(1 —p)"~°

Py (s ) = e

|
o

PG(x;luva-) —

I'/2
PL(LU; H, F) — %(:U—M)Q—/F(F/QP

Voigt = convolution of Lorentzian and Gaussian

Data analysis
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Binomial distribution

Probability of observing in a random experiment x successes out of n tries
when the probability of success is p

Pg(z;n,p) = (3)p"(1—p)" " = sty p°(L—p)" 7"

Example: toss n coins, Pg = probability to find x coins with head up
p: probablity head up
1 - p: probability head down (= tail up)
here: p =%

Example: roll n dices, find x dices with a certain
number, p(x)=1/6, (1—-p)=5/6

Data analysis
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Binomial distribution (Dice rolling)

Example: Probability of rolling a “6” in 10 attempts

Probability of observing in a random experiment x successes
out of n tries when the probability of success is p

Pg(z;n,p) = (2)p*(1 —p)" "

— a:'(giaz)' pm(l _p)n—

T

Mean: U= np

Variance: (72 — np(l — p)

10 dices, p = 1/6 , u(6) = 10/6=1.67, 62 = 50/36, = 1.17

Data analysis

Pg(x, p=1/2, 10)

Pg(x, p=1/6, 10)

Toss a coin
p=0.5
symmetric

0.30

0.20 5= 1/6

asymmetric
0.10

0.004__ e e e e
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For large n and small steps Ax, evaluation becomes impractical !

ﬁ n =100
P=0.5
u =350
0.20 - ] c =,100/4
60 x10 x=50+5 (10 %)
S 0.15- 3
) o
i i 40
o Q.
% 0.10- 5
Q- &
20
0.05 ] !

0 20 40 60 80 100

Data analysis



Poisson distribution: Counting statistics

For small probabilities of success, p < 1, the Binomial distribution can be approximated by

the Poisson distribution: Mm
Pp (aj; )u) = o M Poisson distribution
X only depends on u
o T
Mean T = Z xi_'e_,u = I
x=0 '
0 X
Variance g2 = Z (x — ,U)2 %6_“ =7
=0 '
o 1
T 15
f I
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Outline

Data analysis

Recap of previous seminar

Probability distribution: Gaussian and Lorentzian

Error propagation
Data fitting

How to report and present results

) ) .. [0
Freie Universitat|
&

Berlin

20



Poisson vs. Gaussian distribution

Data analysis

u=10

0.12

0.10 —

0.08 —

0.06 —

Probability

0.04

0.02 —

0.00 —

For u >10, the Poisson distribution (+) is well approximated by a Gaussian distribution.
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Gaussian distribution

For ;1 > 1 the Poisson distribution is nicely approximated by a Gaussian distribution.

“There are several derivations of the Gaussian distribution from first principles,

none of them as convincing as the fact that the distribution is reasonable, that it has a
fairly simple analytic form, and that it is accepted by convention and experimentation to
be the most likely distribution for most experiments.

In addition, it has the satisfying characteristic that the most probable estimate of the
mean yu from a random sample of observations x is the average of those observations x.”

(From: P. R. Bevington, and D. K. Robinson, “Data Reduction and Error Analysis for the Physical Sciences’)

Ending point MOOdy et al
Nat. Commun.
Inhomo- 6, 8315 (2015)
Examples: geneous
broadening
Brown ian motion 10,000 points in Brownian motion Exciton frequency. Wy

Data analysis 22



Gaussian distribution

Probability of one measurement being within [-o;+ 0]
2
T _ [pto P R ).

Pg(z within o) = [/ 7 dr——=e

0.40
0.35
E 0.30
0 0.254
-
£0.20°
B 0.15-
S
£0.10-
0.05-
0.00-

u=30 u u+ u+20 u+3o0

75.8%

FWHM = 204/21In(2) =~ 2.354 0




Lorentzian distribution (Cauchy distribution)

Pr(z;p,T) = = o

1N
o
1

Gaussian
= Lorentzian
a 30
=
S 20 -
®
O
o)

a 10+
0 1 T 1 1 T T 1 T
0.95 1.00 1.05
Value x

Standard deviation not defined,
because of strong “wings”.

Data analysis

Lorentzian distribution:
Fourier transform of exponential decay

=>» Width of frequency distribution is
related to damping:

* Finite lifetime of excited states

« Lineshape of laser cavity modes
due to losses (HeNe laser, Fabry-Perot)

1.0

FWHM FWHM
FR=SU% L -

.

Va1 o0 Va 00 Va1 00

Frequency

0.5 - —

Transmission

0.0

Thorlabs: Fabry-Perot tutorial
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Damped oscillator (light-wave emission, dipole radiation)

f(t) = e™ote " FLf(t), w] s T 5
(wo —w)? +7 (wo —w)? + 7
1.0 A 80 A
— real — real
60 1 —— imag
0.5 -
(D) ) 40 -
© ©
2 2
S 0.0 A = 207
=
<Et < 0
_05 _20 | r
_10 I T T T _40 | T T T T T
0 100 200 300 400 0.06 0.08 0.10 0.12 0.14
Time (s) Frequency (2mr/s)
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Examples of Lorentz vs Gauss Line Shape

Ma16: Coherent phonons Ma9: Photoluminescence
50 H n n oscillations AT clionlts s
o 095 - h ‘_ —— damped cosine fit _ | ’.‘ 4
8 \ i . Lo B excitation fluorescence ,
£ 0.00 - RVEIRY LT AR bearm
5 —0.25 ' ! by, ] :
< ) J “ ; B filter
—0.50 A !
0 2000 4000 6000 8000 10000 Ll SRgAe
Delay time [fs]
- Inhomogeneously
= A/l broadened system
W '\ N \,\ Y
Coherent Quantum
0.04 ~ : Oscillations
O . .
E 0.03 - e Fit Fit
E Lorentz Gauss or
o peak Voigt
0.01 A Molesky et al.
k J. Chem. Educ.
0.00 ' ! ' 100, 342 (2023) Exciton frequency,
0 5 10 15
Frequency [THz] Moody et al. Nat. Commun. 6, 8315 (2015)
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Outline

Data analysis

Recap of previous seminar

Probability distribution: Gaussian and Lorentzian

Error propagation

Data fitting

How to report and present results
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Models

Functional dependences of quantities

r= f(u,v,...)
VAN
result model measured
function quantities

» Test model by systematically varying parameters

» Measuring f(u,v, ...; a,b,...)
Determine model parameters a,b,... by a fit

» What is the uncertainty of the result?

Data analysis
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Models

r= f(u,v,...)
/N
result model measured
function quantities

Data evaluation procedures:

a.) Calculate individual  =; = f(u;, v;, ...)

» If u; and v; belong together

b.) Calculate means and take most probable values

» If u; and v; from independent measurements

Data analysis

> form histogram h(x;)|dz;]|

T = f(u,0,..)

» Error propagation?

29



Propagation of uncertainty

X
For measured quantities u, v, ... Tr = f(u, v, )
X
Assuming that the deviations in u;, v;,... are small, X
deviations in x; can be expressed as
. —\ __ Of — df _ -
Taylor expansion (z; —Z) = 3= | (u; —u) + 35| (v; —0) + Uu u

(derivatives evaluated for variables fixed at mean)

Variance: 57 = ﬁ Z(ﬂfz‘—f)2 = ﬁ [(u — ) (g£> =) <g£) r

I I

Of OF\° Of\ [OFf
s; = s, <%> + 57 <%> + 252 <%> <%>+...

Data analysis
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Propagation of uncertainty

) of 0f\* .o (Of\ [0f
1= (5) e () o () (3)

Covariance: characterizing the correlation
between deviations in different variables

1
Sew = N _1 (u; —a)(v; — v)

— » can be positive or negative

» vanishes for uncorrelated quantities

Data analysis



Propagation of standard uncertainty

IR

f\’ af\° df
— 2 2L | 2 ) | 2 [ 24 i
7 <8u> 7o <8/U> 20 u v

for uncorrelated errors
because
1 - _
S%w:N_l (UZ'—U)(’UZ'—’U)=O

2 |kh%l\3

Often it is sufficient to use just the biggest term!

Data analysis



Propagation of uncertainty: examples

2 2
gg — S—f — 0'% % -+ 0‘%
X N u au v
Conversion of wavelength to energy:
E V]—hc~ 1240 v
e _/1~/1[nm]e A =(635+ 6) nm

-E=0+7)eV

Data analysis

(

af
O

S
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Outline

Data analysis

S D
. . ..., [ e .
Freie Universitat| m Berlin

Recap of previous seminar

Probability distribution: Gaussian and Lorentzian

Error propagation

Data fitting

How to report and present results
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x? test

Data analysis

Comparing the assumed probability distribution function P to a measured histogram h(x;):

=3 ) = NP

2
71=1 Jj (h)
n = 9 bins Ne =3 Gaussian: A, 7,0
. - 14 p= T i
Expected for pure counting statistics: - N=50 At=10 ms
2 2
<X > — UV =7 —"N, 2. 10 /( X = 3.27
@)
/ ™~ 5 8- |
# data/bins  # constraints 03; 5 Vv =9-3=6
I
Reduced chi-squared: 47 /
) 2 $
2
(xo) = <X—> = o—i_';rﬁh L -\ﬁri eessl X, =055

|
v 0.60 0.65 0.70

Time (s)
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Least-squares fit to a line

Data set of (x;, y;) with uncertainties o,,= o;

Assuming Gaussian uncertainties, the most probable
parameters a, b are obtained at minimum of

N

=) Y _5@2(%)]2 =) Ll(y —a-— b:z:i)] . v

N
=1

1=1 ?

Reduced chi-square good fit /
XZ /

Xo=2-~1« with v =N — N, (here N.=2)
14

Data analysis

Fit function:
y(xr) =a+ bx

2.5
2.0

S

D -

> 1.5

O

S i

2 1.0
0.5-

20 40 60 80
Distance x (cm)



x? vs R?

Data analysis

Chi-square

2 = i Y —;JZ(%)}Q

1=1

Reduced chi-square

~ 1

2
2 X
Xy:7

> Takes uncertainties into
account

» Test whether data follow
particular distribution

R squared
(coefficient of determination)

Fit function
N /2
R2—1_ D ie1 Wi — y(xi)] -
27];\;1 (yi — 3/_)2
AN

Mean of data

» Only from residuals

» Measure for the
variation of the data
compared to model

for
good fit

37



Least-squares fit to a line: Linear regression

Analytical solution: a = A ( O'_Z-Z Z U_z'z — (7_z'2 Z (72'2 )
1 1 LiYi L Yi
s (EAT -

1 T? 5 1 1
2 1 _
Variance of fit parameters: 0, A E OZ-Q b A sz
Estimation of uniform variance g? ~ g% = ; E (y; —a — b:z:-)z
N —2 ' '

Data analysis 38



Example 1: Linear fit

Potential drop along a wire

2 — :
U(d) — RJI d/do R =0.994 - good fit

241 —— fit oy = 0.05V

224 Y data 22 =321 for N=9, v=7
% =07 > 42 is too small.
2187 » Standard deviation was overestimated
2 1.6-

1.4 7 Corrected estimate:

1.2 - o' ~o\/x, =0.033V

20 40 60 80
Distance d (cm)

Note: Standard deviation concerns only the random errors.

Total uncertainty due to systematic errors might be larger!

Data analysis



Example 2: Linearize data

Radioactive source at distance d

700 700
600 A I 600 -
500 A 500 -
< >
4 400 < 400 -
5 ; >
8 300 § 300 A
200 A [ ] 200
100 - * s, 100 -
] ] B -
O T T 0

0.2 0.4 0.6 0.8 1.0
Distance d (m)

— fit
§ data

10 20
1/d? (m~2)

I(d) = Iy/d* + Liak = Fitallows separation of
signal and background

On = /N

Data analysis

R? =0.998

> =9.3 for N=10, v=8

» Estimation of g, fits well.
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Non-linear fitting

If fitting function is non-linear in parameters a, b, ... 1000 ¢

» try to transform to linear fit

» numerical least-mean-squares fit

Fit with
one peak \m’

150

Number of occurences

Number of counts

50

0 1 2 3 4
Time of flight
i 7 {in K° rest frame)
0 l I | 1 | 1 | 1 I
0.6 0.8 1.0 1.2 1.4
E (GeV)

“A fit can never be better than your model function.”

Data analysis



Outline

Data analysis

Recap of previous seminar
Probability distribution: Gaussian and Lorentzian
Error propagation

Data fitting

How to report and present results
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Instrumental

Fluctuations in reading of physical instrument

(limited instrumental precision)

Often independent of the actual value

e.g. length, mass, voltage, current... -

» Refer to instrumentation manuals or
other test measurements
(external estimate)

» Estimate of standard deviation from
repeated measurements
(internal estimate)

Data analysis

Statistical uncertainties

Counting experiments:
X represents the count rate in a detector

Statistical fluctuations for finite sample

» Uncertainty can be deduced from data

» Poisson statistics!

o= Vi

43



How to report measurement results and uncertainties

« for N =1 measurement, report instrumental uncertainty

1
N(N —1)

« for N> 1 measurement, report r =IOz with o0z = \
i=1

(or from fit)
» For fit also report reduced chi-squared and R"2 value.

* Indicate estimated systematic uncertainty in addition.

« Report uncertainty with 2 significant digits if intermediate result, and 1 digit for final result.

« Report result with same precision as uncertainty.

Data analysis

(x; — )2
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How to state measurement results and uncertainties

Exercise: State the quantity with uncertainty — convert to scientific notation if helpful

quantity standard uncertainty

50.003 m 0.1m (50.0£0.1)m

53612 s 300 s (5.36 + 0.03)*10% s
632.497 nm 0.153 nm (632.5 +0.2) nm
367134 C 783 C (3.671 + 0.008)*10°C

Data analysis
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How to plot uncertainties of measured data

For small data set: For large data set:
. [
2.0 - — fit 2.0 - e exp. data
N ¢ exp. data _ fit
£ 181 Error bar: 2181 30 of fit
5 e 5
o +97 o 1.6 1
s } oo 5
-B‘ 14 7 .B, 14 -
2 2
o 1.2- 3 1.2 1
= £
1.0 A 1.0 A
(I) E'I) 1IO 1|5 2IO (I) é 1IO 1|5 2I0
Time (s) Time (s)
» Show error bars » Plot uncertainty of fit
» Error bars show two » Or use binning

standard deviations

Data analysis



Take home...

« Keep good experimental records

* Try to measure in several ways

« Calibrate instruments, read their manuals

* Check rounding errors

« Be mindful of largest uncertainty source

* The uncertainty of a fit result does not consider systematic deviations

* Never report measurement results without uncertainties

Data analysis
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Literature

Data analysis

P. R. Bevington, and D. K. Robinson, “Data Reduction and
Error Analysis for the Physical Sciences”

P. Mohrke, and B.-U. Runge, “Arbeiten mit Messdaten”

“Guide to uncertainty propagation and Error analysis” Stony Brook U.

“A beginner guide to uncertainty of measurement’ by Stephanie Bell

Slides and python code examples will be uploaded to website
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Examples with Python
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