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Figure 5.24. (a) The Cornu spiral. The scale of w is marked on the curve.

spiral this would be U, times the length of the line from —o to «

[Figure 5.24(b)]. Setting this equal to U,, we can express the general
case in the normalized form

7, - n__‘i»l_), [CO)+iSWIL[CW) +iSWIT  ©4n

Strictly speaking, very large values of the parameters u,\y, or §
would be inconsistent with the approximation expressed by Eq anon
(5.41). However, in normal cases of interest most of the contnbu‘uon
to U, comes from the lower-order Fresnel zones in the aperture, cor-

responding to low values of the above parameters, hence the approx-
imation is still valid.

|
Slit and Straightedge Fresnel diffraction by a long slit is treated as.a
limiting case of a rectangular aperture, namely, by letting iy = —o and
u, =+ in Equation (5.47). This yields the formula

5.5 + FRESNEL DIFFRACTION PATTERNS

1S(s)

Figure 5.24. (b) Evaluation of Fresnel integrals with the Cornu spiral.

U, = l+1 [C(v)+:S(v)] (5.48)

for the slit where v, and v, define the slit edges.

The straightedge is similarly taken as a limiting case of a slit:
v, = —, This gives

Uy,= —-»QL. [CV) +isW)]™

=Y [C(v,)+;$(v,)+ +% 1]

which is a function of only the one variable v,. This variable specifies
the position of the diffracting edge. If the receiving point P is exactly
at the geometrical shadow edge, then v,=0. We have then
U,= [Uy/(1 + )] 3+ #i) = 2U,. Hence the amplitude at the shadow
edge is one half, and the irradiance is one fourth the unobstructed
value. A plot of I, = |U,|* as given by Equation (5.49) is shown in
Figure 5.25. Here I, is plotted as a function of v,. This is equivalent
to having a fixed position for the receiving point and varying the posi-

(5.49)
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igure 5.25. Fresnel diffraction by a straightedge. (a) Points on the Cornu
spiral; (b) corresponding points on the intensity curve; v=0
defines the geometrical shadow edge. A photograph of the dif-
fraction pattern is shown below.
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tion of the diffracting edge. The result is virtually the same as a
diffraction pattern. From the graph it can be seen that the irradiance
falls off rapidly and monotonically in the shadow zone (v, < 0) as
vy => —, On the other hand, in the illuminated zone (v, > 0) the ir-
radiance oscillates with diminishing amplitude about the unobstructed
value U, as v, = + », The highest irradiance occurs just inside the
illuminated region at the point v, = 1.25, where I, is 1.37 times the
irradiance of the unobstructed wave. This is seen as a bright fringe
next to the geometrical shadow.

5.6 Applications of the Fourier
Transform to Diffraction

Let us return to the discussion of Fraunhofer diffraction. We now
consider the general problem of diffraction by an aperture having not
only an arbitrary shape, but also an arbitrary transmission including
phase retardation, which may vary over different parts of the aper-
ture.

Diffraction Focusing lens

aperture plane

Focal plane

Figure 5.26. Geometry of the general diffraction problem.

We choose coordinates as indicated in Figure 5.26. The diffracting
aperture lies in the xy plane, and the diffraction pattern appears in the
XY plane, which is the focal plane of the focusing lens. According to
elementary geometrical optics, all rays leaving the diffracting aperture
in a given direction, specified by direction cosines «, 8, and v, are
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brought to a common focus. This focus is located at the point P(X,Y)

where X =~ La and Y =~ L@, L being the focal length of the lens. The
assumption is made here that « and 8 are small, so that a ~ tan « and

B =~ tan B. We also assume that y ~ 1.

Now the path difference 8r, between a ray starting from the point
Q(x,y) and a parallel ray starting from the origin O, is given by R - A,
(Figure 5.27), where R = ix + jy and fi is a unit vector in the direction

0‘\/& !

Figure 5.27. Path difference between two parallel rays of light originating
from points O and Q in the xy plane.

of the ray. Since fi can be expressed as fi = la + jB8 + ky, then

- — X Y
8r—R-n—xa+y,8=xT+yT (5.50)
It follows that the fundamental diffraction integral [Equation (5.16)]
giving the diffraction pattern in the XY plane is, aside from a constant
multiplying factor, expressible in the form

UX,Y)= f f et dof = f f etk =X+l gy dy (5.51)

This is the case for a uniform aperture.

For a uniform rectangular aperture the double integral reduces to
the product of two one-dimensional integrals. The result is stated ear-
lier in Section 5.4.

For a nonuniform aperture we introduce a function g(x,y) called
the aperture function. This function is defined such that g(x,y) dx dy

)
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is the amplitude of the diffracted wave originating from the element of

area dx dy. Thus instead of Equation (5.51), we have the more general
formula

UX,y)= J‘J‘ g(x,y) eX=+¥) dx dy (5.52)
It is convenient at this point to introduce the quantities
kX kY
w= T and p = T (5.53)

w and v are called spatial frequencies, although they have the dimen-
sions of reciprocal length, that is, wavenumber. We now write Equa-
tion (5.52) as

U(y.,v)=jj g(x,y) elwz+w) dx dy (5.54)

We see that the functions U(u,v) and g(x,y) constitute a two-dimen-
sional Fourier transform pair. The diffraction pattern, in this context,
is actually a Fourier resolution of the aperture function.

Consider as an example a grating. For simplicity we treat it as a
one-dimensional problem. The aperture function g(y) is then a peri-
odic step function as shown in Figure 5.28. It is represented by a
Fourier series of the form

g(y) = g + g, cos (vy) + g, cos 2vy) + - - - (5.55)

L

e 1 ! e et ==y

(b) —3vo —2v v 0 v 2\!0 3v°

0

Figure 5.28. Aperture function for a grating and its Fourier transform.
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The fundamental spatial frequency v, is given by the periodicity of the
grating, namely, !

_2m
="h (5.56)

Vo
where h is the grating spacing. This dominant spatial frequency ap-
pears in the diffraction pattern as the first-order maximum, the ampli-
tude of which is proportional to g,. Maxima of higher order corre-
spond to higher Fourier components of the aperture function g(y).
Thus if the aperture function were of the form of a cosine function
8o + g1 cos (voy) instead of a periodic step function, then the diffrac-
tion pattern would consist only of the central maximum and the two
first-order maxima. Second or higher diffraction orders would not ap-
pear.

Apodization Apodization (literally “to remove the feet™) is the
name given to any process by which the aperture function is altered in
such a way as to produce a redistribution of energy in the diffraction
pattern. Apodization is usually employed to reduce the intensity of
the secondary diffraction maxima.

It is perhaps easiest to explain the theory of apodization by means
of a specific example. Let the aperture consist of a single slit. The
aperture function in this case is a single step function: g(y)=1
for—b/2 <y < b/2 and g(y) = 0 otherwise (Figure 5.29). The cor-
responding diffraction pattern, expressed in terms of spatial
frequencies, is

L _ , sin (vb
This is equivalent to the normal case already discussed in Section 5.5.
Suppose now that the aperture function is altered by apodizing in
such a way that the resultant aperture transmission is a cosine func-
tion: g(y) =cos (my/b) for —b/2 <y < bj2 and zero otherwise, as
shown in Figure 5.29. This could be accomplished, for example, by

means of a suitably coated-glass plate placed over the aperture. The
new diffraction pattern is given by

Uw)= f % cos (fby-)ew dy
—-b/2 .

(5.58)
= cos (vb/2) (

1 _ 1 )
v—awlb v+xlb

A comparison of the two diffraction patterns is shown graphically in
the figure. The result of apodization in this case is a substantial reduc-
tion in the secondary maxima relative to the central maximum; in

—
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Figure 5.29. (a) Aperture functions for a slit and an apodized slit; (b) the
Fourier transforms.

other words,
frequencies.

In a similar way it is possible to apodize the circular aperture of a
telescope so as to reduce greatly the relative intensities of the diffrac-
tion rings that appear around the images of stars (discussed in Section
5.5). This enhances the ability of the telescope to resolve the image of
a dim star near that of a bright one.

apodization has suppressed the higher spatial

Spatial Filtering Consider the diagram shown in Figure 5.30. Here
the xy plane represents the location of some coherently illuminated
object.® This object is imaged by an optical system (not shown), the
image appearing in the x’y’ plane. The diffraction pattern U(u,v) of
the object function g(x,y) appears in the uv plane. This plane is
analogous to the XY plane in Figure 5.26. Hence, from Equation
(5.54) U (u,v) is the Fourier transform of g(x,y). The image function
g'(x',y") that appears in the x'y’ plane is, in turn, the Fourier trans-
form of U(w,v). Now if all spatial frequencies in the range p = =%,
v =+ were transmitted equally by the optical system, then, from
the properties of the Fourier transform, the image function g'(x'y")

2 For a discussion of the theory of spatial filtering with incoherent illumination see
Reference [10].
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Object plane

Optical system

Image plane

Figure 5.30. Geometry for the general problem of image formation by an op-
tical system.

would be exactly proportional to the object function g(x,y); that is,
the image would be a true reproduction of the object. However, the
finite size of the aperture at the wv plane limits the spatial frequencies
that are transmitted by the optical system. Furthermore there may be
lens defects, aberrations, and so forth, which result in a modification
of the function U(w,v). All of these effects can be incorporated into

one function T (u,») called the transfer function of the optical system.
This function is defined implicitly by the equation

U'(n,v) =T(u,w) Up,v)
Thus

g, y)= J‘_M J:“ T(u,)U(p,v) e=@="+9) gy dy  (5.59)

that is, the image function is the Fourier transform of the product
T(w,v) - U(u,v). The limits of integration are %= in a formal sense
only. The actual limits are given by the particular form of the transfer
function T (u,»).

The transfer function can be modified by placing various screens
and apertures in the pv plane. This is known as spatial filtering. The
situation is quite analogous to the filtering of an electrical signal by
means of a passive electrical network. The object function is the input
signal, and the image function is the output signal. The optical system

)
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acts like a filter that allows certain spatial frequencies to be trans-
mitted but rejects others.

Suppose, for example, that the object is a grating so that the object
function is a periodic step function. This case can be treated as a one-
dimensional problem. The object function f(y) and its Fourier trans-
form U() are then just those shown in Figure 5.28. Now let the aper-
ture in the wv plane be such that only those spatial frequencies that lie
between —vpmax and +vmey are transmitted. This means that we have
low-pass filtering. From Equation (5.53) we have vmax = kb/f, where
2b is the physical width of the aperture in the wv plane. The transfer
function for this case is a step function: T()=1,

~Vmax < V <+ Vmax, and zero otherwise. The image function is,
accordingly,

+vm“
g'(y)= f Uwe' dv _—

Without going into the details of the calculation of g'(y'), we show in
Figure 5.31(a) a graphical plot for some arbitrary choice of vpay. In-
stead of the sharp step function that constitutes the object, the image
is rounded at the corners and also shows small periodic variations.

A high-pass optical filter is obtained by placing in the uv plane a
screen that blocks off the central part of the diffraction pattern. This
part of the diffraction pattern corresponds to the low frequencies. The
approximate form of the resulting image function is shown in Figure
5.31(b). Only the edges of the grating steps are now visible in the
image plane. The edge detail comes from the higher spatial
frequencies.

A practical example of spatial filtering is the pinhole spatial filter
which is used in laser work to reduce the spurious fringe pattern that
always occurs in the output beam of a helium-neon laser. The beam
is brought to a sharp focus by means of a short-focal-length lens. A
fine pinhole placed at the focal point constitutes the filter, which
removes the higher spatial frequencies and hence improves the beam

quality of the laser output. A second lens can be used to render the
beam parallel.

Phase Contrast and Phase Gratings The method of phase contrast
was invented by the Dutch physicist Zernike. It is used to render
visible a transparent object whose index of refraction differs slightly
from that of a surrounding transparent medium. Phase contrast is par-
ticularly useful in microscopy for examination of living organisms,
and so forth. In essence, the method consists of the use of a special
type of spatial filter.

To simplify the theory of phase contrast, we shall treat the case of
a so-called “phase grating” consisting of alternate strips of high- and
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Figure 5.31. Graphs illustrating spatial filtering. (a) Low-pass filtering; (b)

high-pass filtering.

low-index material, all strips being perfectly transparent. The grating
is coherently illuminated and constitutes the object. The object func-
tion is thus represented by the exponential

g(y) = el*® (5.61)

where the phase factor ¢(y) is a periodic step function as shown in
Figure 5.32(a). The *“height” of the step is the optical-phase dif-
ference between the two kinds of strips; that is, A¢ = kz An, where z
is the thickness and An is the difference between the two indices of
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Figure 5.32. (a) The phase function of a periodic phase grating; (b) Fourier
transforms of the aperture U, and the grating U,.

refraction. If we assume that this phase difference is very small, then
to a good approximation, we can write

g) =1+ id(y) (5.62)

The Fourier transform of the above function is

+b/2 o +b/2 .
Uw) = f [1+ ig(y)]e dy—jw e dy+1fw () e™ dy
= U,(v) + iU,(v) (5.63)

Here U,(v) represents the diffraction pattern of the whole-object
aperture, It is essentially zero everywhere except for » = 0; that is,
U,(v) contains only very low spatial frequencies. On the other hand,
U.(v) represents the diffraction pattern of the periodic step function
¢(y). The two functions are plotted in Figure 5.32(b).

By virtue of the factor i in the result, U, + iU,, the two com-
ponents U, and iU, are 90 degrees out of phase. The essential trick in
the phase-contrast method consists of inserting a spatial filter in the
uv plane, which has the property of shifting the phase of iU, by an
additional 90 degrees. In practice this is accomplished by means of a
device known as a phase plate. The physical arrangement is shown in
Figure 5.33. The phase plate is just a transparent-glass plate having a
small section whose optical thickness is 4+ wavelength greater than the
remainder of the plate. This thicker section is located in the central
part of the uv plane, that is, in the region of low spatial frequencies.
The result of inserting the phase plate is to change the function
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Figure 5.33. Physical arrangement of the optical elements for phase contrast
microscopy.

U, + iU, to U, + U,. The new image function is given by the Fourier
transform of the new U(v), namely,

g'(y')=f U (v)e=t*v' dv+J. U,w)e="v" dv

=2,(0") + 80

Now the first function g, is just the image function of the whole-
object aperture. It represents the constant background. The second
function g, is the image function for. a regular grating of alternate
transparent and opaque strips. This means that the phase grating has
been rendered visible. It appears in the image plane as alternate bright
and dark strips. Although the above analysis has been for a periodic
grating, a similar argument can be applied to a transparent-phase ob-
ject of any shape.

The method of optical-phase contrast has a close analogy in elec-
trical communications. A phase-modulated signal is converted into an
amplitude-modulated signal by introduction of a phase shift of 90
degrees to the carrier frequency. This is essentially what the phase
plate does in the phase-contrast method. The net result is that phase
modulation in the object is converted into amplitude modulation in
the image.

(5.64)

5.7 Reconstruction of the Wave Front
by Diffraction. Holography

An unusual and interesting method of producing an image —known as
the method of wave-front reconstruction —has recently become of im-
portance in the field of optics. Although the basic idea was originally
proposed by Gabor in 1947 [12], it attracted little attention until the
highly coherent light of the laser became available.

In this method a special diffraction screen, called a hologram, is
used to reconstruct in detail the wave field emitted by the subject. To
make the hologram the output from a laser is separated into two
beams, one of which illuminates the subject. The other beam, called
the reference beam, is reflected onto a fine-grained photographic film
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Figure 5.34. (a) Arrangement for producing a hologram; (b) use of the
hologram in producing the real and virtual images.

by means of a mirror. The film is exposed simultaneously to the refer-
ence beam and the reflected laser light from the subject [Figure
5.34(a)]. The resulting complicated interference pattern recorded by
the film constitutes the hologram. It contains all the information
needed to reproduce the wave field of the subject.

In use the developed hologram is illuminated with a single beam
from a laser as shown in Figure 5.34(b). Part of the resulting dif-
fracted wave field is a precise, three-dimensional copy of the original
wave reflected by the subject. The viewer looking at the hologram
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sees the image in depth and by moving his head can change his per-
spective of the view.

In order to simplify the discussion of the theory of holography, we
shall assume that the reference beam is collimated; that is, it consists
of plane waves, although this is not actually necessary in practice. Let
x and y be the coordinates in the plane of the recording photographic
plate, and let U(x,y) denote the complex amplitude of the reflected
wave front in the xy plane. Since U(x,y) is a complex number, we can
write it as

U(x,y) = a(x,y)e'*=) (5.65)

where a(x,y) is real. ‘
Similarly, let U,(x,y) denote the complex amplitude of the refer-
ence beam. Since this beam is plane, we can write

Uo(x,y) = ap 4=+ (5.66)

where a, is a constant and u and v are the spatial frequencies of the
reference beam in the xy plane. They are given by

p=ksina v=ksinp (5.67)

in which k is the wave number of the laser light, and « and B specify
the direction of the reference beam. : .

The irradiance I(x,y) that is recorded by the photographic film is
thus given by the expression

I(x,y)=|U+ UJE=a* + a,* + aage'®=n-rz=rv] 4 gqoe=ilsw)-nz-vy]
= a® + a,® + 2aa, cos [$(x,y) — px — vy] (5.68)

This is actually an interference pattern. It contains information in the
form of amplitude and phase modulations of the spatial frequencies of
the reference beam. The situation is somewhat analogous to the
impression of information on the carrier wave of a radio transmitter
by means of amplitude or phase modulation.

When the developed hologram is illuminated with a single beam
U, similar to the reference beam, the resulting transmitted wave Uz is
proportional to U, times the transmittance of the hologram at the
point (x,y). The transmittance will be proportional to I(x, ): Hence,
except for a constant proportionality factor that we ignore,

Ur(x,y) = Uol = ag(a® + ae?)e!=+"") + gy?a '* + ay*ae(*-21s=20)
= (a® + a2) Uy + a2U + a*U-1U,"? (5.69)

The hologram acts somewhat like a diffraction grating. It produces
a direct beam and two first-order diffracted beams on either side of
the direct beam [Figure 5.34(b)]. The term (a* + a,*)U, in Equation
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(5.69) comprises the direct beam. The term a,?U represents one of
the diffracted beams. Since it is equal to a constant times U, this
beam is the one that reproduces the reflected light from the subject
and forms the virtual image. The last term represents the other dif-
fracted beam and gives rise to a real image.

We shall not attempt to prove the above statements in detail. They
can be verified by considering a very simple case, namely, that in
which the subject is a single white line on a dark background. In this
case the hologram turns out to be, in fact, a simple periodic grating.
The zero order of the diffracted light is the direct beam, whereas the
two first orders on either side comprise the virtual and the real
images. )

In holography the viewer always skes a positive image whether a
positive or a negative photographic transparency is used for the
hologram. The reason for this is that a negative hologram merely
produces a wave field that is shifted 180 degrees in phase with respect
to that of a positive hologram. Since the eye is insensitive to this
phase difference, the view seen by the observer is identical in the two
cases.

Remarkable technical advances have been made in the field of
holography in recent years. Holography in full color is possible by
using three different laser wavelengths instead of just one, the holo-
graphic record being on black-and-white film. The holographic princi-
ple has been extended to include the use of acoustic waves for
imaging in optically opaque media and to microwaves for long-dis-
tance holography.

Holographic Interferometry One of the most notable applications of
holography is in the field of interferometry. In this application the sur-
face to be tested can be irregular and diffusely reflecting instead of
smooth and highly polished as is required for the ordinary Michelson
and Twyman-Green type of interferometric work. In double-exposure
holographic interferometry two separate exposures are made on a
single recording film. If the surface under study undergoes any defor-
mation or movement during the time interval between exposures,
such movement is revealed on the reconstructed image in the form of
interference fringes. In double-pulse holography the two exposures
are produced by short, intense laser pulses from a high-power pulsed
laser. These pulses are closely spaced in time so that the holographic
image fringes can show motion, vibration patterns, and so on. The
method is especially useful for nondestructive testing. For more infor-
mation on the subject of holography, the reader is encouraged to con-
sult a text such as An Introduction to Coherent Optics and Holo-
graphy by G. W. Stroke [38].
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