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FlgUre5.24. (a) Tbe Cornu spiral. The scale of w is marked on the curve.

spiral this would be UI times the length of the line from -00 to 00

[Figure 5.24(b)]. Setting this equal to Uo,we can express the general
case in the normalized form

Up = (1 ~oi)2 [c(u) + iS(u)]:~[C(v) + iS(v)]~. (5.47)

Strictly speaking, very large values of the parameter~ Y, or s

would be inconsistent with the approximation expressed ~yuE~~tion
(5.41). However, in normal cases of interest most of the contribu'~ion
to Up comes from the lower-order Fresnel zones in the aperture, cor-
responding to low values of the above parameters, hence the appro~-

imation is still valid. \
SUt and Straightedge Fresnel diffraction by a long slit is treated as a
limiting case of a rectangular aperture, namely, by letting UI= -00 and
U2= +00 in Equation (5.47). This yields the formula

1.0

~ C(s)
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Flgure 5.24. (b) Evaluation of Fresnel integrals with the Cornu spiral.

Up= lu.:.i [C(v)+iS(v)]~:

for the slit where VIand v2 define the slit edges.
The straightedge is similarly taken as a limiting case of a slit:

VI =-00. This gives

(5.48)

Up = 1~i [C(v) + iS(v)]::

= lu.:.i [C(VI) + iS(V2)+ ~ + ~ iJ

which is a function of only the one variable VI'This variable specifies
the position of the diffracting edge. If the receiving point P is exactly
at the geometrical shadow edge, then VI= O. We have then
Up= [Uo/(1+ i)] (t+ to = tuo. Hencethe amplitudeat the shadow
edge is one half, and the irradiance is one fourth the unobstructed
value. A plot of lp = IUplI as given by Equation (5.49) is shown in
Figure 5.25. Here lp is plotted as a function of VI' This is equivalent
to having a fixed position for the receiving point and varying the posi-

(5.49)
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Flgure 5.25. Fresnel ditrraction by a straightedge. (a) Points on the Cornu
spiral; (b) corresponding points on the intensity curve; v =0
defines the geometrical shadow edge. A photograph of the dif-
fraction pattern is shown below.
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tion of the diffracting edge. Tbe result is virtually the same as a
diffraction pattern. Frorn the graph it can be seen that the irradiance
falls oft' rapidly and monotonically in the shadow zone (VI< 0) as
VI-+ -00. On the other hand, in the illuminated zone (VI> 0) the ir-
radiance oscillates with diminishing amplitude about the unobstructed
value Vo as VI-+ + 00.The highest irradianee oceurs just inside the
iIIuminated region at the point VI = 1.25, where Ip is 1.37 times the
irradiance of the unobstroeted wave. Tbis is seen as a bright fringe
next to the geoinetrical shadow.

5.6 Applicationsof the Fourier
Transform to Dift'raction

Let us return to the diseJssion of Fraunhofer dift'raction. We now
eonsider the general problem of diffraetion by an aperture having not
only an arbitrary shape, but also an arbitrary transmission including
phase retardation, which may vary over different parts of the aper-
ture.

j'

x

Focal plane

Flgure 5.26. Geometry of the general ditrraction problem.

We ehoose coordinates as indieated in Figure 5.26. The diffraeting
aperture lies in the xy plane, and the diffraetion pattern appears in the
XY plane, which is the focal plane of the focusing lens. According to
elementary geometrieal opties, aIl rays leaving the diffracting aperture
in a given direetion, speeified by direction eosines a, ß, and y, are
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brought to a common focus. This focus is located,at the point P(X,Y)
where X La and Y ... Lß. L being the focallength of the lens. Tbe
assumption is made here that a and ß are small. so that a - 18na and
ß ... tan ß. We also assurne that 'Y ... 1.

Now the path difference 8r, between a ray startiog from the point
Q(x,y) and a parallel ray starting from the origin 0, is given by R . fi,
(Figure 5.27), where R ==fx + Jy and n is a unit vector in the direction

R

\

or- ~
yB,/"\

Flgure 5.1:1. Path dltrerence between two parallel rays of light originating
from points 0 and Q in the xy plane.

of the ray. Since Acan be expressed as ii == ta + Jß + ky, then
X Y

8r ==R .n== xa + yß == x - + Y- (5.50)L L

It follows that the fundamental diffraction integral [Equation (5.16)]
giving the diffraction pattern in the XY plane is, aside from a constant
multiplying factor, expressible in the form

U(X.y) == JJ efk8r dd == JJ 'efk(ZX+J1Y)1Ldx dy

This is the case for a uniform aperture.
For a uniform rectanguIar aperture the double integral reduces to

the product of two one-dimensional integrals. The result is stated ear-
lier in Seetion 5.4.

For a nonuniform aperture we introduce a function g(x,y) called
the aperture function. This function is defined such that g(x,y) dx dy

(5.51)
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is the amplitude of the diffracted wave originating from the element of
area dx dy. Thus instead of Equation (5.51), we have tbe more general
formula

U(X,Y) == ff g(x,y) eIXz+YlI)dx dy

It is convenient at this point to introduce the quantities

(5.52)

kX
IJ.==T

kY
v==Tand (5.53)

IJ.and v are called spatialfrequencies, although they have the dimen-
sions of reciprocaI length, that isowavenumber. We now write Equa-
tion (5.52) as

U{IJ.,v)== 11 g(x,y) el(ItZ+VII)dx dy

We see that the functions U{IJ.,v)and g(x,y) constitute a two-dimen-
sional Fourier transform pair. Tbe diffraction pattern, in this context,
is actually a Fourier resolution of the aperture function.

Consider as an example a grating. For simplicity we treat it as a
one~dimensionalproblem. The aperture function g(y) is tben a peri-
odic step function as shown in Figure 5.28. It is represented by a
Fourier series of the form

(5.54)

.;

g(y) == go+ gl cos (voY)+ g2 cos (2voY)+ . . . (5.55)

g (y)

.1

!

"'y
(a) -2h -h 0

u (v)

h

~v

(b) -3vo -2vo -Vo 0 Vo 2"0 3vo

F:lgure 5.28. Aperture funetion rar a grating and its Fourier transrorm.
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Tbe fundamental spatial frequeney "0is given by the periodieity of the
grating, namely,

g (y)

d!
Apodlzed

-b/2 b/2
,.y

21T

"0 = h (5.56)

where h is the grating spacing. Tbis dominant spaiial frequeney ap~
pears in the diffraetion pattern as the first-order maximum, the ampli-
tude of whieh is proportional to gl' MkXimaof higher order eorre-
spond to higher Fourier eomponents of the aperture funetion g(y).
Tbus if the aperture funetion were of the form of a eosine funetion
go+ gl eos (lIoY)instead of aperiodie step funetion, then the diffrae-
tion pattern would eonsist only of the eentraI maximum and the two
first-order maxima. Seeond or higher diffraetion orders would not ap-
pear.

(a)

u (v)

Apodlzatlon Apodization (literally "to remove the feet") is the
name given to any proeess by whieh the aperture funetion is altered in
sueh a way as to produee aredistribution of energy in the diffraetion
pattern. Apodization is usually employed to reduee the intensity of
the secondary diffraetion maxima.

It is perhaps easiest to explain the theory of apodization by means
of a speeifie example. Let the aperture eonsist of a single ~lit. Tbe
aperture funetion in this ease is a single step funetion: g(y) = 1
for - b/2 < Y < b/2 and g(y) = 0 otherwise(Figure5.29).The eor-
responding diffraetion pattern, expressed in terms of spatial
frequeneies, is

Flgure 5.19. (a) Aperture runctions ror a slit and an apodized slit; (b) the
Fourier transrorms.

other words, apodization has suppressed the higher spatial
frequeneies.

In a similar way it is possible to apodize the eireular aperture of a
teleseope so as to reduee greatly the relative intensities of the diffrae-
tion rings that appear around the images of stars (diseussed in Seetion
5.5). This enhanees the ability of the teleseope to resolve the image of
a dirn star near that of a bright one.

f+bl2 sin (tllb)
U(II) = elVIIdy = b (5.57)

-b12 (tllb)

This is equivalent to the normal ease already diseussed in Seetion 5.5.
Suppose now that the aperture funetion is altered by apodizing in

sueh a way that the resultant aperture transmission is a eosine fUne-
tion: g(y) = eos (1TY/b) for -b/2 < Y < b/2 and zero otherwise, as
shown in Figure 5.29. Tbis could be accomplished, for example, by
means of a suitably eoated-glass plate placed over the aperture. Tbe
new diffraction pattern is given by

f
+b/2

(
1T

)U(II) = eos ~b elVII dy
-b/2 .

= cos (vb/2) (v _l1T/b 11+11Tlb)

A eomparison of the two diffraetion patterns is shown graphieally in
tbe figure. Tbe result of apodization in this ease is a substantial redue-
tion in tbe seeondary maxima relative to the eentral maximum; in

(5.58)

Spatlai Fllterlng Consider the diagram shown in Figure 5.30. Here
the xy plane represents the loeation of some coherently illuminated
object.3 This objeet is imaged by an optieal system (not shown), the
image appearing in the x'y' plane. Tbe diffraction pattern U(p.,v) of
the objeet funetion g(x,y) appears in the p.v plane. This plane is
analogous to the XY plane in Figure 5.26. Hence, from Equation
(5.54) U (P.,II)is the Fourier transform of g(x,y). The image funetion
g'(x',y') tbat appears in tbe x'y' plane is, in turn, tbe Fourier trans-
form of U(JJ.,v).Now if all spatial frequencies in the range p.= zoo,
v = Z 00were transmitted equally by the optieal system, then, from
the properties of the Fourier transform, the image function g'(x'y')

SPor a discussion oe the theory oe spatial filtering with incoherent illumination see
Reeerence [10].
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x

Image plane

Flgure 5.30. Geometry for the general problem of image formation by aß op-
tical system.

would be exaetly proportional to the objeet'funetion g(x,y); that is,
the image would be a tnIe reproduction of tbe object. However, the
finite size of the aperture at the /LVplane limits the spatial frequenCies
that are transmitted by the optical system. Furthermore there may be
lens defects, aberrations, and so forth, whieh result in a modifieation
of the funetion U(p.,v). All of these effeets ean be ineorporated into
one funetion T(p.,v) ealled the transferfunetion of the optical system.
Tbis funetion is defined impliCitlyby the equation

U'(p.,v) = T(p.,v) U(p.,v)

Tbus

/
/

f+oo f+oo

g'(x',y')= -00 -00 T(/L,v)U(p"v) e-I("""+vJI')d/L dv (5.59).

that is, the image funetion is the Fourier transform of the produet
T(p"v). U(p.,v). Tbe limits of integration are :!:coin a formal sense
only. Tbe aetuallimits are given by the partieular form of the transfer
funetionT(p.,v). .

Tbe transfer function ean be modified by plaeing various screens
and apertures in the /LVplane. This is known as spatial filtering. The
situation is quite analogous to the filtering of an eleetrieal signal by
means of a passive electrical network. Tbe object function is the input
signal, and the image function is the output signal. Tbe optical system
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acts like a filter that allows certain spatial frequencies to be trans-
mitted but rejects others.

Suppose, for example, that the object is a grating so that the object
function is a periodic step function. This case can be treated as a one-
dimensional problem. Tbe object function f(y) and its Fourier trans-
form U(v) are thenjust those shown in Figure 5.28. Now let the aper-
ture in the /LVplane be such that ooly those spatial frequencies that lie
between -Vmaxand +vmaxare transmitted. Tbis means that we have
low-pass filtering. From Equation (5.53) we have Vmax= kblf,where
2b is the physical width of the aperture in the ILVplane. The transfer
function for this case is a step function: T(v) = I,
-Vmax < V < + Vmax, and zero otherwise. Tbe image function is,
accordingly,

f
+v....

g'(y') = U(v)e-bJl' dv
-p....

Withoutgoing into the details ofthe calculation of g'(y'), we show in
Figure 5.31(a) a graphical plot for some arbitrary choice of "max. In-
stead of tbe sharp step function that constitutes the object, the image
is rounded at tbe corners and also shows small periodic variations.

A high-pass optical filter is obtained by plaCingin the ILVplane a
screen tha.t blocks off the central part of the diffraction pattern. This
part of the diffraction pattern corresponds to tbe low frequencies. The
approximate form of the resulting image function is shown in Figure
5.31(b). Only the edges of the grating steps are now visible in the
image plane. The edge detail eomes from the higher spatial
frequencies.

A practical example of spatial filtering is the pinhole spatial filter
which is used in laser work to reduce the spurious fringe pattern that
always oecurs in the output beam of a helium-neon laser. Tbe beam
is brought to a sharp focus by means of a short-focal-Iength lens. A
fine pinhole placed at the focal. point constitutes the filter, which
removes the higher spatial frequencies and hence improves the beam
quality of the laser output. A second lens can be used to render the
beam parallel.

(5.60)

Phase Contrast and Phase Gratlngs The method of phase contrast
was invented by the Dutch physicist Zernike. It is used to render
visible a transparent object whose index of refraction differs slightly
from that of a surrounding transparent medium. Phase contrast is par-
ticularly useful in microscopy for examination of living organisms,
and so forth. In essence, tbe method consists of the use of a special
type of spatial filter.

To simplify the theory of phase contrast, we shall treat the case of
a so-called "phase grating" consisting of alternate strips of high- and
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Flgure 5.31. Graphs illustrating spatial ftltering. (a) Low-pass ftltering; (b)
high-pass filtering. .

low-index material, all strips being perfectly transparent. The grating
is coherently illuminated and constitutes the object. Tbe object func-
tion is thus represented by the exponential

g(y) = ef4t(lI) (5.61)

where the phase factor cf>(y)is a periodic step fUnctionas shown in
Figure 5.32(a). Tbe "height" of the step is the optical-phase dif-
ference between the two kinds of strips; that is, lu/>= kz An, where z
is the thickness and An is the difference between the two indices of

)
5.6 . APPLICATIONS OF THE FOURIER TRANSFORM TO DIFFRACTION

(a)
.0-h

.,. (y)

~ il
h

VI (v)

Vz(v)

143

""'-7Y

(b)

Flgure 5.32. (a) Tbe phase function of aperiodie phase grating; (b) Fourier
transforms of the aperture UI and the grating UI'

refraction. If we assume that this phase difference is very smalI, then
to agood approximation, we can write

g(y) = 1+ icf>(y) (5.62)

The Fourier transform of tbe above function is

~

f
+~

f
~

U(v) =L~[1 + icf>(y)]ef1>lldy = -/>1ZefvlIdy + i -biZcf>(y)elvlIdy
= UI(v) + iUz(v) (5.63)

Here UI(v) represents the diffraction pattern of the whole-object
aperture. It is essentially zero everywbere except for v = 0; tbat is,
U1(v)contains only very low spatial frequencies. On tbe other hand,
U1(v) represents tbe diffraction pattern of the periodic step function
cf>(y).Tbe two functions are plotted in Figure 5.32(b).

By virtue of the factor i in the result, U I + i Uz, the two com-
ponents UI and iUz are 90 degrees out ofpbase. The essential trick in
the phase-contrast method consists of inserting a spatial filter in the
/LVplane, which has the property of shifting the phase of iU1 by an
additional 90 degrees. In practice tbis is accomplisbed by means of a
device known as a phase plate. The physical arrangement is shown in
Figure 5'.33.Tbe phase plate isjust a transparent-glass plate having a
small section whose optical thickness is t wavelength greater than the
remainder of the plate. Tbis thicker section is located in the central
part of the /LVplane, that is, in tbe region of low spatialfrequencies.
Tbe result of inserting the phase plate is to change the function
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Flgure 5.33. Physical arrangement of the optical elements for phase contrast
microscopy.

VI + iV" to VI + V". Tbe new image function is given by the Fourier
transform of the new V (v), namely,

C'(y') = J VI(v)e-bll' dv + J V,,(v)e-bll' dv

= CI(Y') + CI(Y')

(5.64)

(a)

Now the first function CI is just the image function of the whole-
object aperture. It represents the constant background. Tbe second
function CI is the image functionfor,a regular gratingof alternate
transparent and opaque strips. Tbis means that the phase grating has
been rendered visible. It appears in the image plane as alternate bright
and dark strips. Although the above analysis has been for a periodic
grating, a similar argument can be applied to a transparent-phase ob-
ject of any shape.

Tbe method of optical-phase contrast has a close analogy in elec-
trical communications. A phase-modulated signal is converted into an
amplitude-modulated signal by introduction of a phase shift of 90
degrees to the carrier frequency. Tbis is essentially what the phase
plate does in the phase-contrast method. Tbe net result is that phase
modulation in the object is converted into amplitude modulation in
the image.

Hologram

Viewer

Laser
&iii

L.

0
/::/~

~ %~-,/.l-v
Vlrtual
Image

(b)

5.7 Reconstructlon of the Wave Front
by Dlft'ractlon.Holography

An unusual and interesting method ofproducing an image-known as
the method of wave-front reconstruction - has recently become of im-
portance in the field of optics. Although the basic idea was originally
proposed by Gabor in 1947 [12], it attracted little attention until the
highly coherent light of the laser became available.

, In this method a special diffractiori screen, called a hologram. is
used to reconstnlct in detail the wave field emitted by the subject. To
make the hologram the output from a laser is separated into two
beams, one of which illuminates the subjecl Tbe other beam, called
the reference beam. is reflected onto a fine-grainedphotographic film

Flgure 5.34. (a) Arrangement for producing a hologram; (b) use of the
hologram in producing the real and virtual images.

by means of a mirror. Tbe film is exposed simultaneously to the refer-
ence beam and the reflected laser light from the subject [Figure
5.34(a)]. Tbe resulting complicated interference pattern recorded by
the film constitutes the hologram. It contains all the information
needed to reproduce the wave field of the subject.

In use the developed hologram is illuminated with a single beam
from a laser as shown in Figure 5.34(b). Part of the resulting dif-
fracted wave field is a precise, three-dimensional copy of the original
wave reflected by the subject. The viewer looking at the hologram
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sees the image in depth and by moving his head can change his per-
spective of the view.

In order to simplify the discussion of the theory of holography, we
shall assurne that the reference beam is collimated; that is, it consists
of plane waves, although this is not actually necessary in practice. Let
x and y be the coordinates in the plane of the recording photographic
plate, and let V(x,y) denote the complex amplitude of the reflected
wave front in the xy plane. Since V(x,y) is a cQmplexnumber, we can
write it as

V(x,y) = a(x,y)el..(Z.II) (5.65)

where a(x,y) is real.
Similarly, let Vo(x,y) denote the complex amplitude of the refer-

ence beam. Since this beam is plane, we can write

Vo(x,y)= ao el(I&z+VI/) (5.66)

where ao is a constant and p, and v are the spatial frequencies of the
reference beam in the xy plane. They are given by

po= k sin a v =k sin ß (5.67)

in which k is the wave number of the laser light, and a and ß specify
the direction of the reference beam.

Tbe irradiance l(x,y) that is recorded by the photographic film is
thus given by the expression

I (x,y)= !IV+ Uolr= al + aol+ aaoel[4>(Z.II)-I&Z-.II]+ aaoe-l[e(z.II)-I'Z-.II)

= al + ao'J + 2aao eos [cf>(x,y)- p,x - vy] (5.68)

This is aetually an interferenee pattern. It contains information in the
form of amplitude and phase modulations of the spatial frequeneies of
the reference beam. Tbe situation is somewhat analogous to the
impression of information on the carrier wave of a radio transmitter
by means of amplitude or phase modulation.

When the developed hologram is illuminated with a single beam
U0 similar to the referenee beam, the resulting transmitted wave V T is
proportional to U0 times the transmittanee of the hologram at the
point (x,y). Tbe transmittanee will be proportional to l(x,y). Henee,
exeept for a eonstant proportionality faetor that we ignore, .
VT(x,y) = Vol = ao(al+ aol)el(I'z+.II)+ aola eie + aolae-I(e-II'Z-bll)

= (al + aol)Uo+ aolU + aIU-1Uo-1 (5.69)

Tbe hologram acts somewhat like a diffraction grating. It produees
a direct beam and two first-order diffracted beams on either side of
the direct beam [Figure 5.34(b)]. The term (al + aoz)Uoin Equation
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(5.69) comprises the direct beam. Tbe term aolV represents one of
the diffracted beams. Since it is equal to a constant times V, this
beam is the one that reproduees the reflected light from the subject
and forms the virtual image. Tbe last term represents the other dif-
fracted beam and gives rise to a real image.

We shall not attempt to prove the above statements in detail. They
can be verified by considering a vei'y simple case, namely, that in
which the subject is a single white line on a dark background. In this
case the hologram turns out to be, in fact, a simple periodie grating.
The zero order of the diffraeted light i8 the direet beam, whereas the
two ftrst orders on either side comprise the virtual and the real
images.

In holography the viewer always sees a positive image whether a
positive or a negative photographic transparency. is used for the
hologram. Tbe reason for this is that a negative hologram merely
produees a wave field that is shifted 180 degrees in pMse with respeet
to that of a positive hologram. Since the eye is insensitive to this
phase differenee, the view seen by the observer is identieal in the two
cases.

Remarkable technical advances have been made in the field of
holography in recent years. Holography in full color is possible by
using three different laser wavelengths instead of just one, the holo-
graphic reeord being on black-and-white film. Tbe holographic prinei-
pIe has been extended to include the use of aeoustie waves for
imaging in optieally opaque media and to microwaves for long-dis-
tanee holography.

Holographie mterferometry One of the most notable applications of
holography is in the field of interferometry. In this applieation the sur-
face to be tested can be irregular and diffusely reflecting instead of
smooth and highly polished as is required for the ordinary Michelson
and Twyman-Green type of interferoinetric work. In double-exposure
holographie interferometry two separate exposures are made on a
single reeording film. Ir the surfaee under study undergoes any defor-
mation or movement during the time interval between exposures,
such movement is revealed on the reeonstrueted image in the form of
interferenee fringes. In double-pulse holography the two exposures
are produeed by short, intense laser pulses from a high-power pulsed
laser. These pulses are closely spaeed in time so that the holographie
image fringes can show motion, vibration patterns, and so on. The
method is espeeially useful for nondestructive testing. For more infor-
mation on the subject of holography, the reader is encouraged to eon-
sult a text such as An Introduction to Coherent Optics and Holo-
graphy by G. W. Stroke [38].


