10 Introduction i

and photorefractive crystals are now being used, to an increasing exltent, for
specific applications for which they offer definite advantages. \:’ery m.terest-
ing possibilities have been opened up in dynamic h.olograph).z, including the
generation of phase-conjugate waves by Brillouin scattering, and holo-
graphy in resonant media [Denisyuk, 1980]. .
The striking realism of holographic images has always been something
that has fascinated scientists as well as laymen. However, as a result of the
developments of the last decade, holography has ceased tc: be anovelty anfi
has become a well-established technique with many invaluable appli-
cations. As always in scientific research, some of these advances‘ were
essentiaily unanticipated ; we can fully expect many more such surprises in
the next few years.

The wavefront reconstruction process

The concepts of holography outlined in Chapter 1 can now be formulated
and discussed in more specific terms.

21 The in-line (Gabor) hologram

Consider the optical system shown in fig. 2.1, which is essentially
that used by Gabor [1948] to demonstrate holographic imaging. In this
setup, the coherent light source as well as the object, which is a transparency
containing small opaque details on a clear background, are located along
the axis normal to the photographic plate.

When the object is illuminated with a uniform parallel beam, the light
transmitted by it consists of two parts. The first is a relatively strong,
uniform plane wave corresponding to the directly transmitted light. This
constitutes the reference wave, and, since its amplitude and phase do not
vary across the photographic plate, its complex amplitude can be written as
a real constant r. The second is a weak scattered wave due to the
transmittance variations in the object. The complex amplitude of this wave,
which varies across the photographic plate, can be written as o(x, y), where
lo(x, y)| <.

The resultant complex amplitude at any point on the photographic plate

Fig. 2.1. Optical system for recording an in-line (Gabor) hologram.
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is the sum of these two, so that the intensity at this , nt (see Appendix A3.1)
is

I(x, y)=Ir +o(x, Y,
=r2+lo(x, y)I? +r o(x, y)+r 0*(x, y), (2.1)
where 0*(x, y) is the complex conjugate of o(x, y).

A positive transparency is made from this recording. For simplicity, it is
assumed that this has been processed so that its amplitude transmittance t
(the ratio of the transmitted amplitude to that incident on it) is a linear
function of the intensity and_ can be written as .

t=t,+pTI, 22)
where t, is a constant background transmittance, T is the exposure time
and fis a parameter determined by the photographic material used and the
processing conditions. The amplitude transmittance of the transparency is,
accordingly,

t(x, y)=to+BT[r* +lolx, y)I* +r ox, y)
+ro*(x, y)]. (2.3)
To view the reconstructed image, this transparency is replaced in the
same position as the original photographic plate and illuminated once
again with the same parallel beam of monochromatic light used to record
the hologram, as shown in fig. 2.2. Since the complex amplitude at any point
in this beam is, apart from a constant factor, the same as that in the reference
beam, the éomplcx amplitude transmitted by the hologram can be written
as
u(x, )=r t(x, y),
=r(to+BTH)+BTHo(x, y)*
+BTHo(x, y)+BTr*o*(x, ). (2.4)

Fig. 2.2. Optical system for reconstructing the image from an in-line
(Gabor) hologram, showing the formation of the twin images.
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The complex amplitude of the transmitted wave consists, therefore, of four

distinct components.

The first of these, r(t, + fT+?), is a uniformly attenuated plane wave, the
directly transmitted beam.

The second term, BTHo(x, y)|?, is extremely small in comparison to the
other terms, since it has been assumed initially that |o(x, y)| < r. Under these
conditions, it can be neglected.

The third term, T+ o(x, y), is, except for a constant factor, the same as the
original wavefront from the object incident on the photographic plate.
Hence, it gives rise to a reconstructed image of the object in its original
position. Since this is located behind the transparency at a distance z, from
it, and the reconstructed wave appears to diverge from it, it is a virtual
image. _

In the same manner, the fourth term corresponds to a wavefront which
resembles the wavefront diverging from the object, except that it is of
opposite curvature. Hence, it converges to form a real image, the conjugate
image, at the same distance z, in front of the hologram.

Itis apparent that, with such a system, an observer focusing on one image
sees it superposed on the out-of-focus twin image as well as a strong
coherent background. This constitutes its most serious limitation.

Another major limitation is the need for the object to have a high average
transmittance, if the second term on the right hand side of (2.4), which has
been taken as negligible, is not to interfere with the reconstructed image.
Typically, it is possible to form images of fine opaque lines on a transparent
background, but not vice versa.

Finally, it should be noted that the hologram used to reconstruct the
image must be a positive transparency. Since the image-forming waves
interfere with the background in the process of reconstruction, if the plate
which has been exposed in the recording step is used directly (in which case
B in (2.2) is negative), the reconstructed image will also be a negative.

22. The off-axis (Leith-Upatnieks) hologram
 The first successful technique for separating the twin images was

developed by Leith & Upatnieks [1962, 1963, 1964]. As shown in fig. 2.3,a
separate reference beam derived from the same coherent source is allowed
to fall on the photographic plate, during the recording process, at an offset
angle 6 to the beam from the object. For simplicity, this reference beam can
be assumed to be a collimated beam of uniform intensity.

The complex amplitude due to the object beam at any point (x, y) on the
photographic plate can then be written as
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. )
o(x, y)=lo(x, y)lexp [ —i¢(x, y)], (2.5)
while that due to the reference beam is
r(x, y)=rexp (i2n{x), (2.:6)

where £, =(sin 8)/4, since the reference beam has uniform intensity and only
its phase varies across the photographic plate.
Tke resultant intensity at the photographic plate is

I(x, y)=Ir(x, y)+olx, y)I*
=[r(x, y)* +lo(x, y)? .
+rlo(x, y)lexp [ —id(x, y)] exp (—i2n¢,x)
+rlo(x, y)| exp [i$(x, y)] exp (i2n¢,x),
=r?+|o(x, y)I* +2rlo(x, y)| cos [2n¢ x + $ (x, y)]. 2.7)
As can be seen from (2.7), the amplitude and phase of the object wave are
encoded, respectively, as amplitude and phase modulation of a set of
interference fringes equivalent to a spatial carrier with a spatial frequency
equal to £,.

If, as in (2.2), it is assumed that the amplitude transmittance of the
photographic plate after processing is linearly related to the intensity in the
interference pattern, the amplitude transmittance of the hologram can be
written as '

t(x, y)=to+BT{lo(x, y)*
+rlo(x, y)lexp[ —id(x, y)]exp(—i2n¢,x)
+rlo(x, y)lexp [i¢ (x, y)] exp (i2n¢ x)]}, (2.8)
where B is the slope (in this case, negative) of the amplitude transmittance
versus exposure characteristic of the photographic material, T is the
exposure time and t, is a constant background transmittance.
To reconstruct the image, the hologram is illuminated once again, as
shown in fig. 2.4 with the same reference beam as was used to record it. The

Fig. 2.3. Hologram recording with an off-axis reference beam.
\\x
' e z
Reference - . \

wave }/\

// Photographic
% ) plate
Object

The off-axis hologram 15
)
complex amplitude u(x, y) of the transmitted wave is, in this case also, the
sum of four terms, each corresponding to one of the terms of (2.8), and can
be written as

u(x, y)=r(x, y)t(x, y),

=uy(x, y)+uy(x, y)+us(x, y)+uyx, y), (29)
where
uy(x, y)=torexp (i2néx), (2.10)
uy(x, y)=BTrlo(x, y)|* exp (i2n¢,x), (2.11)
us(x, y)=BTr?o(x, y), (2.12)
uy(x, y)=PBTr?*o*(x, y)exp (i4n& x). (2.13)

The first term on the right hand side of (2.9), u,(x, y), is, as before, merely
the attenuated reference beam, which is a plane wave directly transmitted
through the hologram. This directly transmitted beam is surrounded by a
halo due to the second term, u,(x, ), which is spatially varying. The angular
spread of this halo is determined by the angular extent of the object.

The third term, u,(x, y) is identical with the original object wave, except
for a constant factor, and generates a virtual image of the object in its
original position; this wave makes an angle § with the directly transmitted
wave. Similarly, the fourth term, u,(x, y), gives rise to the conjugate real

image. However, in this case, the fourth term includes an exponential factor,

exp (i4n¢,x), which indicates that the conjugate wave is deflected off the axis
at an angle approximately twice that which the reference wave makes with
it.

Thus, even though two images — one real and one virtual — are still
reconstructed in this setup, they are angularly separated from the directly

Fig. 2.4. Image reconstruction by a hologram recorded with an off-
axis reference beam.
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transmitted beam and from each other, and * ‘e offset angle 6 of the
reference beam is made large enough, it is possible to ensure that there is no
overiap. This method therefore eliminates at one stroke all the major
drawbacks of Gabor’s original in-line arrangement. In addition, it is also
interesting that the sign of f in this case only affects the phase of the
reconstructed image — a ‘positive’ image is obtained even if the hologram
recording is a photographic negative.

The minimum value of the offset angle 6 required to ensure that each of
the images can be observed without any interference from its twin, as well as
from the directly transmitted beam and the halo of scattered light
surrounding it, is determined by the minimum spatial carrier frequency (¢,)
for which there is no overlap between the angular spectra of the third and
fourth terms and those of the first and second terms.

These angular spectra are the Fourier transforms (see Appendix A1) of
these terms and can be written as follows.

Uy(§, m)=F{torexp (i2n¢x)},

=toré (¢ +¢,, 7). (2.14)
Us(&, m)=F{BTrlo(x, y)* exp(i2n¢,x)},
=BTr O, m*OE¢, n)*S( +&,m)], (2.15)

where O(¢, n)= F{o(x, y)} is the spatial frequency spectrum of the object
beam, and the symbols % and * denote, respectively, the operations of
correlation and convolution.

U:(C, N) - .?'{BTrzo(x, }’)}'

=BTr*0(¢, n). (2.16)
Uy n)=F{BTrro*(x, y)exp (i4né x)},
=BTr20*(&, n)*S(E +2¢,,n). (2.17)

As can be seen from fig. 2.5, which shows these spectra schematically, the
term |U,| is merely the object-beam spectrum multiplied by a constant and
is centred at the origin of the spatial frequency plane. The term |U,|
corresponds to the spatial frequency of the carrier fringes and is a § function
located at (—¢,,0), while |U,| is centred on this é function and, being
proportional to the auto-correlation function of O(&, ), has twice the
extent of the object-beam spectrum. Finally, |U,| is similar to |U,| but is
displaced to.a centre frequency.(—2¢,, 0).

Evidently, |Us| and |U,| will not overlap |U,| and |U,| if the spatial carrier
frequency ¢ is chosen so that

&>3m | (2.18)

where £, is the highest frequency in the spatial frequency spectrum of the
object beam. '
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23.  Fourier ..olograms
Another interesting category of hologram recording configu-

rations is one in which the waves that interfere at the hologram plane are
the Fourier transforms of the object and reference waves. Normally, this
implies an object which lies in a single plane, or is of limited thickness.

A typical optical arrangement for recording such a hologram (Vander
Lugt, 1964) is shown in fig. 2.6. The object, a transparency located in the
front focal plane of a lens, is illuminated by a parallel beam of monochro-
matic light. If the complex amplitude leaving the object plane is o(x, y), the
complex amplitude of the object wave at the photographic plate located in
the back focal plane of the lens is

0, m=F{o(x, y)}- (2.19)
The reference beam is derived from a point source also located in the front
focal plane of the lens. If 5(x + b, y) is the complex amplitude of this point

Fig. 2.5. Spatial frequency spectra of (a) the object beam and (b) 2
" hologram recorded with an off-axis reference beam.
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source, the complex amplitude of the reference wa. . at the hologram plane
is
R(&,n)=exp(—i2nb). (2.20)
The intensity in thc interference pattern formed by these two waves is
therefore
I, m)=1+]0(, n)|*+O(¢, n)exp (i2n&b)
' +0*(¢, n)exp (—i2néb). (2.21)
To rcconstruct the image, the processed hologram is placed in the front
focal plane of the lens and illuminated with a parallel beam of monochro-
matic light of unit amplitude as shown in fig. 2.7. If it is assumed, as before,
that the amplitude transmittance of the processed hologram is a linear
function of I(, ), the complex amplitude of the light transmitted by the
hologram is
Ui, m=to+BTIE, 1). (2.22)
The complex amplitude in the back focal plane of the lens is then the

Fi_g. 2.6. Optical system for recording a Fourier hologram,
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ux, y)=F{UE, )},
=(to+BT)(x, y)+BTo(x, yyko(x, y)
+BTo(x—b, y)+BTo*(—x+b, —y). (2.23)

Asshown in fig. 2.7, the first term on the right-hand side of (2.23) comes to
a focus on the axis, while the second term forms a halo around it. The third
term corresponds to the original object wave shifted downwards by a
distance b, while the fourth term is the conjugate of the original object wave
inverted and shifted upwards by the same amount b. Both the images are
real and can be recorded on a photographic film placed in the back focal
plane of the lens. Since the film records only the intensity distribution in the
image, it is possible, in this case, to identify the conjugate image only by the
fact that it is inverted (see fig. 2.8). '

Fourier holograms have the useful property that the reconstructed image
is stationary even when the hologram is translated in its own plane. This is
because a shift of a function in the spatial domain only results in its Fourier
transform being multiplied by a phase factor which is a linear function of -

the spatial frequency (see Appendix A1). This phase factor has no effect on
the intensity distribution in the image.

24 The lensless Fourier hologram

A hologram with the same properties as a Fourier hologram can be
obtained even without a lens to produce the Fourier transform of the object
wave, provided the reference wave is produced by a point source in the
plane of the object [Stroke, 1965; Stroke, Brumm & Funkhouser, 1965].

Fig. 2.8. Twin images reconstructed by a Fourier hologram.
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means of a small moving pupil [Dainty & Weunord, 1971]. As the pupil
uncovers different parts of the hologram, the speckle pattern in the image
plane changes so that the exposure corresponds to the sum of the irradiance
distributions in a number of uncorrelated speckle patterns. This method
was extended by Yu & Wang [1973], who proposed the use of a moving
mask with a random distribution of openings covering the entire hologram,
and by Som & Budhiraja [1975], who claimed that a further reduction in
speckle could be obtained by the use of a moving mask at some distance
from the hologram, both in recording and reconstruction. However, it can
be shown that while there is a reduction of speckle, it is always accompanied
by a reduction in either the resolution or the contrast of the image.

[Hariharan & Hegedus, 1974a,b; McKechnie, 1975a, b: Ostlund &
Biedermann, 1977].

4

Types of holograms

A hologram recorded on a photographic plate and processed normally is
equivalent to a grating with a spatially varying transmittance. However,
with suitable processing, it is possible to produce a spatially varying phase

~ shift. In addition, if the thickness of the recording medium is large

compared with the fringe Ispacing, volume effects are important. In an
extreme case, it is even possible to produce holograms in which the fringes
are planes running almost parallel to the surface of the recording materiai
and which reconstruct an image in reflected light.

Based on these characteristics, holograms recorded in a thin recording
medium can be divided into amplitude holograms and phase holograms.
Holograms recorded in relatively thick recording media can be classified
either as transmission amplitude holograms, transmission phase holo-
grams, reflection amplitude holograms or reflection phase holograms.

In the next few sections we shall examine some of the principal
characteristics of these six types of holograms.

41. Thin holograms

Any hologram in which the thickness of the recording material is
small compared with the average spacing of the interference fringes can be
classified as a thin hologram. Such a hologram can be characterized by a
spatially varying complex amplitude transmittance

t(x, y)=It(x, y)lexp [ —id(x, y)]. 4.1)

4.1.1. Thin amplitude holograms
In an amplitude hologram, ¢(x, y) is essentially constant while
|t(x, y)| varies over the hologram. To calculate the complex amplitude of the
diffracted waves from such a hologram and, hence, its diffraction efficiency,
consider a grating formed in a suitable thin recording medium by a plane
object wave and a plane reference wave,
If we assume that the resulting amplitude transmittance is linearly related
to the intensity in the interference pattern, the amplitude transmittance of

41



the grating can be written as )

lt(x)| =to+t, cos Kx. ' 42)
where t, is the average amplitude transmittance of the grating, t, is the
amplitude of the spatial variation of |t(x)| and

K=2n/A, (4.3)
where A is the spacing of the fringes.

Since the values of |t(x)| are limited to the range 0<|t(x)|<1, and the
amplitudes of the diffracted waves are linearly proportional to the
amplitude of the spatial variation of |t(x)], the diffracted amplitude is a
maximum when

[t(e)|=(1/2)+(1/2) cos Kx,
=(1/2)+(1/4)exp (iKx) +(1/4) exp (—iKx).
_ ‘ (44)

The maximum amplitude in each of the diffracted orders is one fourth of
that in the wave used to illuminate the hologram, so that the peak
' dlf}’ractzon efficiency is

Emex =(1/16), (4.5)
or 0.0625;

In practice, no recording medium has a linear response over the full range
of transmittance values from 0 to 1; hence this value of ¢ cannot be achieved
without running into nonlinear effects.

4.1.2.  Thin phase holograms
For a lossless phase grating, |t(x)|=1, so that the complex
amplitude transmittance is
t(x)=exp [ —ip(x)]. ' (4.6)
If the phase shift produced by the recording medium is linearly
proportional to the intensity in the interference pattern,

d(x)=¢o+¢,cos(Kx), 4.7
and the complex amplitude transmittance of the grating is
t(x)=exp (—ipo)exp [ —i¢, cos (Kx)]. (4.8)

If we neglect the constant phase factor exp (—i@,), the right hand side of
(4.8) can be expanded as a Fourier series to give

-]

tx)= 3 i"J,(¢,)exp(inKx), (4.9)

n=-m

where J, is the Bessel function of the first kind of order n.

voiume holograms 43

Such a thin phase grating diffracts a wave incident on it into a large
number of orders, the diffracted amplitude in the nth order being
proportional to the value of the Bessel function J,(¢,). Only the wave of
order 1 contributes to the desired image. As shown in fig. 4.1, the amplitude
diffracted into this order, which is proportional to J,(¢,), increases at first
with the phase modulation and then decreases.

The diffraction efficiency of the grating is, accordingly,

e=J3$y), (4.10)
and its maximum value is
&max =0.339. (4.11)

4.2. Volume holograms

The medium in which a hologram is recorded can have a thickness
of as much as a few millimetres, while the fringe spacing may only be of the
order of 1 ym. The hologram is then a three-dimensional system of layers
corresponding to a periodic variation of absorption or refractive index, and
the diffracted amplitude is a maximum only when the Bragg condition is
satisfied. The characteristics of generalized volume gratings have been
discussed in detail by Russell [1981] and by Solymar & Cooke [1981].
However, for simplicity, we will only consider a grating produced by
recording the interference of two infinite plane wavefronts in a thick

Fig. 4.1. Diffraction efficiency of a thin phase grating as a function of
the phase modulation [Kogelnik, 1967].
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44 Types of holograms

recording medium. We will also assume that, initially, the recording
medium is perfectly transparent but, after processing, develops a sinusoidal
variation of the absorption or the refractive index in the direction
perpendicular to the interference surfaces. In addition, while the in-
terference surfaces can assume any orientation, only two limiting cases will
be considered, in which they are either perpendicular or parallel to the
hologram plane.

The first case arises when the two interfering wavefronts make equal but
opposite angles to the surface of the recording medium and are incident on
it from the same side. Holograms recorded in this fashion give a
reconstructed image in transmitted light. The second case arises when the
wavefronts are symmetrical with respect to the surface of the recording
medium but are incident on it from opposite sides. Holograms of this type
give a reconstructed image by reflection.

The spacing between successive fringe planes is a minimum, and the
volume effects are most pronounced, when the angle between the two
interfering wavefronts is a maximum (= 180°). This has made it possible to
produce reflection holograms with a wavelength selectivity high enough to
reconstruct an image of acceptable quality when illuminated with white
light.

43. The coupled wave theory
‘When analysing the diffraction of light by such thick gratings, it is
necessary to take into account the fact that the amplitude of the diffracted
wave increases progressively, while that of the incident wave decreases, as
they propagate through the grating. One way of doing this is by means of a
coupled wave approach such as that developed by Kogelnik [1967, 1969].
Consider a coordinate system in which, as shown in fig. 4.2, the z-axis is
perpendicular to the surfaces of the recording medium and the x-axis is in
the plane of incidence, while the fringe planes are oriented perpendicular to
the plane of incidence. The grating vector K is perpendicular to the fringe
planes. It is of length |[K|=2n/A, where A is the grating period, and
makes an angle ¥ ( =90° or 0° in the cases shown) with the z axis. The
refractive index n and the absorption constant « are assumed to vary
sinusoidally, their values at any point being given by the relations

n=n°_+nloosK-x, (4.12)
oa=o0g+0y cosK-x, (4.13)

where the radius vector x=(x, y, z). For simplicity, the refractive index of
the surrounding medium is also assumed to be n,.

The coupled wave theory 45
)

If monochromatic light is incident on the hologram grating at, or near,
the Bragg angle, and if the thickness of the medium is large enough, only
two waves in the grating need be taken into consideration; these are the
incoming reference wave R and the outgoing signal wave S. Since the other
diffraction orders violate the Bragg condition strongly, they are severely
attenuated and can be neglected. If we also assume that these waves are
polarized with their electric vector perpendicular to the plane of incidence,
their interaction in the grating can be described by the scalar wave equation

V2E+Kk*E=0, (4.14)

where E is the total electric field and k is the (spatially varying) propagation
constant in the grating.

We assume that the absorption per wavelength as well as the relative
variations in refractive index of the medium are small, so that

"okog’ %o,
noky> o4,
ny>ny, (4.15)

Fig. 4.2. Volume transmission and reflection gratings and their
associated vector diagrams for Bragg incidence [Kogelnik, 1967].
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where ko, =27/A. The propagation constant can then be  tten in the form
k*=B?—2ix,B+4xBcosK-x, (4.16)

where B=n,k, is the average propagation constant, and « is the coupling
constant defined as

k=(nn,/2)—ix,/2. (4.17)

This coupling constant describes the interaction between the reference

wave R and the signal wave S. If x=0, there is no modulation of the
refractive index or the absorption and hence, no diffraction.

The propagation of the two coupled waves through the grating can be

described by their complex amplitudes R(z) and S(z), which vary along zas a

result of the energy interchange between them as well as energy losses due to

absorption. The total electric field E in the grating is then the superposition
of the fields due to these two waves so that

E=R(z)exp(—ip-x)+S(z) exp (—io - x), (4.18)
where p and ¢ are the propagation vectors for the two waves; these are
defined by the propagation constants and the directions of propagation of
R and S. The quantity p is assumed to be equal to the propagation vector of
the free reference wave in the absence of coupling, while & is determined by
the grating and is related to p and the grating vector by the expression

c=p—-K (4.19)

For the special case of incidence at the Bragg angle 6,, the lengths of both

p and o are equal to the free propagation constant nok,, and the Bragg
condition, which can be written in the form

cos (Y —0y)=K/2nyk,, (4.20)
is obeyed. If (4.20) is differentiated, we obtain
(d6y/dAo)=K/4mn, sin (Y —6,). (4.21)

It follows from (4.21) that small changes in the angle of incidence or the
wavelength have similar effects.

A useful parameter for evaluating the effects of deviations from the Bragg
condition is the dephasing measure {, which can be defined as

{=(pl* —lal*)/2lpl,
=(B*~|4{")/2B,
=K cos (y —0)— K%A/4nn,, 4.22)
from (4.19). For small deviations Af and A/ from the Bragg condition, this
becomes

{=A8-K sin () —0,)— AL K*/4nn,. (4.23)

To derive the coupled wave equations, (4.14) and (4.16) are combined,
and (4.18) and (4.19) are inserted. If then, the terms involving exp(—ip‘x)
and exp(—i @ -x) are compared, we get

R"—-2iR'p,—2iaBR +2xBS =0, (4.24)
and

§” —2iS'g,—2iaBS + (B* —|0|*)S + 2kBR =0, (4.25)
where the primes denote differentiation with respect to z.If, in addition, it is
assumed that the energy interchange between S and R, as well as the energy

absorption in the medium are slow, the second differentials R” and S” can be
neglected. From (4.23) these equations can then be rewritten in the form

R’ cos 0+ aR =ixkS, (4.26)
[cos 6 —(K/B)cosy]S’ +(a+i{)S = —ixR. (4.27)

The coupled wave equations (4.26) and (4.27) show that the amplitude of
a wave changes along z because of coupling to the other wave (xR, kS) or
absorption (aR, aS). For deviations from the Bragg condition, S is forced
out of synchronism with R, due to the term involving {S, and the interaction
decreases.

The coupled wave equations, (4.26) and (4.27), can be solved for the
appropriate boundary conditions. These are R(0)=1, S(0)=1, for trans-
mission gratings, and R(0)=1, S(d)=0, for reflection gratings.

In the next few sections we will discuss the solutions for the most
important cases, namely lossless phase gratings and pure absorption
gratings, the grating planes being assumed to run either normal to the
surface (for transmission gratings) or parallel to the surface (for reflection
gratings). The method of solution of the coupled wave equations, as well as
solutions for the cases of slanted gratings, lossy phase gratings and mixed
gratings are to be found in the original paper by Kogelnik [1969]. This
paper also gives an extension of the theory to light polarized with the
electric vector in the plane of incidence.

44, Volume transmission holograms

44.1. Phase gratings

In a lossless phase grating o, =a, =0. Diffraction is caused by the

spatial variation of the refractive index. The diffracted amplitude is then
S(@)= —iexp (—iy)sin (®? + 3312

T+ ?

(4.28)




va 1yped U nuiograms
411.  Imaging properties of volume holograms :
In-the case of volume holograms, which diffract strongly at the
Bragg angle, the amplitude of the reconstructed wavefront is affected by any
changes of wavelength or geometry between recording and reconstruction.
In addition, changes in the thickness of a photographic emulsion due to
processing can result in a rotation of the fringe planes as well as a change in
their spacing [ Vilkomerson & Bostwick, 1967] (see fig. 4.11).

With gratings recorded with plane wavefronts it is possible to com-
pensate for these by changing either the angle of illumination or the
wavelength [Belvaux, 1975]. However, complete compensation is not
possible with a hologram of a point at a finite distance, or an extended
object, and this results in variations of amﬁlitude across the reconstructed
wavefront and reduced diffraction efficiency. The effects of emulsion
shrinkage in volume holograms have been considered by Latta [1971c] and
by Forshaw [1973], who have shown that it is possible, in this case also, to
define a pupil functidn; this differs from the pupil function for a thin
hologram defined in section 3.4, in that it involves spatial modulation of the
amplitude as well as the phase.

Optical systems and light sources

A typical optical system for recording transmission holograms of a diffusely
reflecting object is shown in fig. 5.1, while one for recording a reflection
hologram is shown in fig. 5.2.

A simpler arrangement for making reflection holograms is shown in fig.
5.3. This is essentially the same as that described originally by Denisyuk
[1965] in which, instead of using separate object and reference beams, the
portion of the reference beam transmitted by the photographic plate is used
toilluminate the object. It gives good results with specular reflecting objects
and with a recording medium such as dichromated gelatin, which scatters
very little light.

Making a hologram involves recording a two-beam interference pattern.
The principal factors which must be taken into account in a practical setup
to obtain good results are discussed in the next few sections.

L4 K Vibration isolation

Any change in the phase difference between the two beams during
the exposure will result in a movement of the fringes and reduced
modulation in the hologram [Neumann, 1968].

Fig. 5.1. Optical system for recording a transmission hologram.,
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In some situations, the effects of object movement can oe minimized by
means of an optical system in which the reference beam is reflected from a

mirror mounted on the object [Mottier, 1969]. Alternatively, if the

consequent loss in resolution can be tolerated, a portion of the laser beam
can be focused to a spot on the object, producing a diffuse reference beam
[Waters, 1972]. Stability requirements for reflection holograms can be
minimized with a setup similar to that shown in fig. 5.3 in which the surface
of the object is painted with a retroreflective paint and the hologram plate is
rigidly attached to it (‘piggyback’ holography) [Neumann & Penn, 1972].

Fig. 5.2. Typical optical arrangement for recording a reflection
hologram.
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Fig. 5.3. Simple setup for making reflection holograms,
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Relative motion is virtually eliminated since the plate moves with the
object.

Most commonly, to avoid mechanical disturbances, all the optical
components as well as the object and the recording medium are mounted
on a stable surface, Acceptable results can be obtained with a concrete slab
resting on inflated scooter inner tubes, but most laboratories now use a
rigid optical table supported by a pneumatic suspension system, so that it
has a low natural frequency of vibration (= 1 Hz). This has the advantage
that components can be mounted on magnetic bases or bolted down to its
surface.

Air currents, acoustic waves and temperature changes also cause major
problems. Their effects are usually minimized by enclosing the working
area. -

Residual disturbances can be eliminated almost completely by a
feedback system in which any motion of the interference fringes in the
hologram plane is picked up by a photodetector [Neumann & Rose, 1967;
MacQuigg, 1977]. Variations in its output are amplified and applied to a
piezoelectric element which controls the position of a mirror in the

reference-beam path to restore the path difference between the two beams
to its original value.

52. Fringe visibility
To produce a hologram that reconstructs a bright image, the

interference pattern formed at the recording medium by the object and
reference waves should have as high a contrast as possible. This is because
the amplitude of the diffracted wave increases with the modulation depth of
the interference pattern that is recorded.

The contrast of the interference pattern at any point in the hologram
plane is measured by the fringe visibility (see Appendix A3.1) which is given
by the relation

: & =(Imn_lmin)/(fmx+-!min)’ {51]

where I, and I, are the local maximum and minimum values of the
intensity.

53. Beam polarization

Most gas lasers used for holography have Brewster angle windows
on the plasma tube so that the output beam is linearly polarized. Maximum
visibility of the fringes will then be obtained if the angle iy between the
electric vectors in the two interfering beams is zero (see Appendix A3.1).
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This condition is automatically satisfied, irrespective of the angle
between the two beams, if they are both polarized with the electric vector
normal to the plane of the optical table. On the other hand, if they are
polarized with the electric vector parallel to the surface of the table, the
angle i between the electric vectors is equal to the angle 6 between the two
beams, and, in the extreme case where the two beams intersect at right
angles, the visibility of the fringes drops to zero.

With a diffusely reflecting or metallic object it is also necessary to take
into account the polarization changes in the light scattered by it [Rogers,
1966; Ghandeharian & Boerner, 1978] which can result in a significant
decrease in the visibility of the fringes. This can be minimized either by
rotating the polarization of the reference beam so that the cross-polarized
light can also interfere with it, or by using a sheet polarizer in front of the
hologram plate to eliminate the cross-polarized component. Another
alternative is to use a circularly polarized reference beam [Vanin, 1979].

54. Beam splitters

If we assume that the interfering beams are polarized with the

electric vector perpendicular to the plane of incidence, the fringe visibility is
given by the relation

¥ =2y15(t)lor/(0* +17), (52)
where r and o are the amplitudes of the reference and object beams, and
912(1) is the degree of coherence between them. If the beam ratio, R =(r/o)?,

is defined as the ratio of the irradiances of the reference and object beams,
(5.2) can be rewritten as

¥ =2ly1,(1)|R'?/(1+R). (5.3)

The fringe visibility is obviously a maximum when R = 1. However, the
wave scattered by a diffusely reflecting object exhibits quite strong
variations in amplitude (see Appendix A4.1). Hence, in hologram recording

it is usually necessary to work with a value of R> 1 to avoid nonlinear
effects.

To optimize the visibility of the fringes at the hologram plane it should be
possible to vary the ratio of the power in the beam illuminating the object to
that in the reference beam.

A convenient way to do this is to use a beam splitter consisting of a disc
coated with a thin aluminium film whose reflectivity is a linear function of
the azimuth. Such a beam splitter must be used in the unexpanded laser
beam because of the gradient of reflectivity across a larger beam. Since an
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aluminium film typically absorbs about 30 per cent of the energy incident
on it, this limits its use to moderate laser powers (<500 mW).

A much better variable-ratio beam splitter, with a uniform field and very
low insertion loss, uses a polarizing prism to divide the incident beam into
two orthogonally polarized components [Caulfield & Beyen, 1967]. A
typical setup for this is shown in fig. 5.4. The ratio of the transmitted and
reflected powers is given by the relation

Lo/ Ten =0t ¥, (5.4)
where ¥ is the angle which the incident electric vector makes with the
vertical. This ratio can be conveniently controlled by using a half-wave
plate to rotate the direction of polarization of the input beam. Another fixed
half-wave plate in the transmitted beam is used to bring the electric vector
of this beam back to vertical:

55. Beam expansion
The laser beam has to be expanded to illuminate the object and the
plate on which the hologram is recorded. Usually this is done with
microscope objectives.
If the laser is oscillating in the TEM,, mode, the beam has a Gaussian
profile so that the amplitude at a point at a radial distance r from the centre

Fig. 5.4. Variable-ratio beam splitter using a polarizing prism.
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of the beam is
a(r)=a(0) exp (—r?/w?), (5.5

where a(0) is the amplitude at the centre of the beam and w is the beam
radius (the radius at which the amplitude drops to 1/e of its maximum
value).

Accordingly, P(r) the laser power within a circle of radius r is given by the
relation

P(r)= i I(r)2nrdr, g (5.6)

where I(r) =|a(r)|? is the intensity at a radial distance r from the centre of the
beam; this can be written as

P(r)=P,[1—exp(—2r¢/w?], (5.7

where P, is the total power in the beam.
From (5.5) and (5.7) it follows that

P(r)/Piy=1-[1(r)/1(0)]. (58)

This is a useful relation giving the loss in power that must be tolerated for a
given degree of uniformity of illumination.

Due to the high coherence of laser light, the expanded beam invariably
exhibits diffraction patterns (spatial noise) due to scattering from dust
particles on the optical surfaces in the beam path. To eliminate these, a
pinhole is placed at the focus of the microscope objective. If this pinhole has
a radius p, spatial frequencies higher than &=p/if, where 1 is the
wavelength of the light and fis the focal length of the microscope objective,
are blocked. These higher spatial frequencies mainly represent noise, so that
the transmitted beam has a smooth Gaussian profile.

A proper choice of the size of the pinhole can ensure that the power loss is
minimal. Thus, it follows that the amplitude in the focal plane of the

microscope objective, obtained from the two-dimensional Fourier trans-'\

form of (5.5), is
A(p)=A(0) exp (—*w?p?/2%f?), (5.9

where p is the radial distance from the centre of the beam.

Typically, with an argon-ion (Ar*) laser, =514 nm and w=0.8 mm,
and, with a 16 mm microscope objective and a 10 um diameter pinhole, the
amplitude at the edge of the pinhole is only 0.08 of that at the centre. Hence,

from (5.8), more than 99 per cent of the total power in the beam is
transmitted through the pinhole.
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5.6. Exposure control

An accurate spot photometer is required to measure the ir-
radiances due to the object and reference beams in the hologram plane, so
asto set the beam ratio R at a suitable value. Because of the limited dynamic
range of photographic materials used for holography, the object illumi-
nation should be adjusted so that the irradiance in the hologram plane due
to it is reasonably uniform. In addition, precise control of the exposure is
required to ensure good diffraction efficiency and avoid nonlinear effects. It
isnot enough to maintain a specified exposure time because the laser output
can fluctuate during the exposure. To overcome this problem it is
convenient to use an electronic exposure-control unit which integrates the
irradiance in the hologram recording plane and closes the shutter at a preset
value of radiant exposure [Lin & Beauchamp, 1970a]. A more sophisti-
cated system which is suitable for multicolour holography has been
described by Oreb & Hariharan [1981].

5.7. Coherence requirements

In order to obtain maximum fringe visibility, it is also essential to
use coherent illumination. Gas lasers provide an intense source of highly
coherent light and are therefore used almost universally in optical
holography.

Spatial coherence is automatically ensured if the laser oscillates in a
single transverse mode, preferably the lowest order or TEM,, mode, since
this is inherently the most stable and giver most uniform illumination over
the field. Normally, this is no problem since most gas lasers are designed to
operate in this mode [Bloom, 1968]. However, they are not usually
designed for single-frequency operation, which would imply that they
should also oscillate in only one longitudinal mode. The temporal
coherence of the light from most lasers is therefore limited by their
longitudinal mode structure.

To obtain a satisfactory hologram, the maximum optical path difference
between the object and reference beams in the recording setup must be less

‘than the coherence length (see Appendix A3.4) of the light from the laser.

With an extended object, the holodiagram [ Abramson, 1969] (see section
14.9) can be used to optimize the layout.

58. Temporal coherence of laser light
The simplest form of resonant cavity for a laser is made up of a pair
of mirrors separated by a distance L, though in some cases, where operation
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on more than one line is possible, a wavelength selectc ljrism may also be
necessary as shown in fig. 5.5. The resonant frequencies of such a cavity are
given by the expression

va=n(c/2L), (5.10)
where nis an integer and c is the speed of light. However, as shown in fig. 5.6,
the laser can oscillate only at those frequencies within the gain curve of the
active medium at which the gain is adequate to overcome the cavity losses.
The width of the individual modes depends on the losses as well as the
mechanical stability of the cavity structure and is typically about 3 MHz.
Accordingly, if a laser is made to oscillate in a single longitudinal mode, the
coherence length would be of the order of 100 metres.
Since, in frequency space, the width of the individual modes is much less

Fig. 5.5. Optical system of a typical Ar* laser.
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than their separation (which may range from 600 MHz for a 25 cm cavity
down to 75 MHz for a 2 m cavity), the power spectrum of a laser oscillating
in N longitudinal modes can be represented by N equally spaced delta
functions. If we assume that the total power is equally divided between the
N modes, the power spectrum can be written as
n+N=-1

Sp)= Y d(v—v,).

The degree of temporal coherence can then be evaluated from (A3.14), and,
for a path difference p, is

(5.11)

- sin (Nmp/2L)
12 = NG ap2D) [ (5.12)
This is a periodic function whose first zero occurs when

p=2L/N, (5.13)

corresponding to the effective coherence length. Fringes with acceptable
visibility can usually be obtained for path differences that are less than half
the coherence length.

Itis apparent from (5.13) that the existence of more than one longitudinal
mode in a laser reduces the coherence length severely. A short coherence
length is troublesome, since it makes it essential to equalize the mean
optical paths of the object and reference beams and restricts the maximum
depth of the object field that can be recorded.

The simplest way to force a laser to operate in a single longitudinal mode
is to use a very short cavity so that the spacing of the longitudinal modes is
greater than the width of the gain profile over which oscillation is possible.
This occurs when

c/2L = Av, (5.14)
where Av is the width of the gain profile (typically 1.7 GHz for a helium-
neon (He-Ne) laser, 3.5 GHz for an Ar™ laser). However, the power
available from such a short cavity is extremely limited.

The most common method of ensuring single frequency operation is to
use an intracavity etalon as shown in fig. 5.5. In effect the laser is now made

“\_up of two resonant cavities, and only those modes which are common to

‘\both cavities, as shown in fig. 5.7, have low enough losses for oscillation to
be possible. If the length of the etalon is made short enough that it satisfies
(5.14), it can support only one mode, and single-frequency operation is
obtained.

If the etalon is to act as a simple transmission filter, it must be tilted to
decouple it from the laser cavity. It can then be tuned to maximize the
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output power by tilting it further so that its resonant fre., ..éncy corresponds
to the peak of the gain curve [Hercher, 1969]. An alternative method of
tuning which gives better frequency stability and efficiency is to mount the
etalon within an oven which can be maintained at any desired temperature.

Decoupling is easier if an etalon with concentric surfaces is used [Hari-
haran, 1982].

5.9. Gas lasers

The light source most commonly used for holography is a gas laser.
Gas lasers, in general, are cheaper, easier to operate and have better
coherence characteristics than other types of lasers. The range of useful
wavelengths and typical output powers available at these wavelengths with
the most commonly used gas lasers are summarized in Table 5.1.

When working with any laser, adequate safety measures must be taken to
avoid eye damage (see ANSI, 1980; BSI, 1983). Even with relatively low-
power gas lasers (& 1 mW) the beam should not enter the eye diréctly. This
is because the beam is focused into a very small spot on the retina resulting
in a power density about 10° times that at the cornea. With medium power
lasers (< 100 mW) care must also be taken to avoid stray reflections, but the

l-j ig. 5.7. Normal multifrcq_ucncy output, etalon transmittance and
single-frequency output with an intracavity etalon for a typical Ar*

laser,
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risk of eye damage is minimal once the beam has been diffused or expanded.
However, at power levels > 1 W, viewing even a light-coloured diffusing
surface illuminated by the unexpanded beam is dangerous, since the surface
intensity is comparable to that of the sun. With such lasers, as well as with
pulsed lasers (see section 5.10) safety glasses must be worn.

For a simple holographic set up, the He-Ne laser is by far the most
economical choice. It operates on a single line at 633 nm, does not require
water cooling and has a long life. However, depending on their power,
commercial He-Ne lasers oscillate in three to five longitudinal modes, and
the coherence length is limited.

In contrast to the He—Ne laser, the Ar* laser essentially has a multiline
output but can be made to operate on a single line by replacing the
reflecting end mirror by a prism and mirror assembly. It is also relatively
easy to obtain single-frequency operation with an etalon. Argon—ion lasers
can give high power output and an extended coherence length in the blue or
green regions of the spectrum, the two strongest lines being at 488 nm and
514 nm. _

The krypton-ion (Kr*) laser is very similar in its construction and
characteristics to the Ar™ laser and is a useful replacement for the He-Ne
laser, where high output power and an extended coherence length are
required at the red end of the spectrum (647 nm).

The helium-cadmium (He-Cd) laser provides a stable source at a
relatively short wavelength (442 nm). It is very useful with recording
materials such as photoresists (see section 7.3), whose increased sensitivity
at this wavelength makes up for the lower power available.

Table 5.1. Output wavelength and output power of gas lasers

Wavelength Laser Typical power Colour
nm mW
442 He-Cd 25 Violet
w458 Ar* 200 Blue-violet
N 476 Kr* 50 Blue
\ 477 Ar* 400 Blue
1488 Ar* 1000 Green-blue
1514 Ar* 1400 Green
521 Kr* 70 Green
'633 He-Ne 2-50 Red
647 Krt 500 Red
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The recording medium

Before we look at the different recording materials which have been used for
optical holography, it is necessary to define the most important characteris-
tics of a holographic recording medium.

6.1. Macroscopic characteristics

Any material used to record a hologram must respond to exposure
to light (after additional processing, where necessary) with a change in its

optical properties. The complex amplitude transmittance of such a material
can be written in the most general manner as

t=exp (—od) exp [ —i(2nnd/A)],

=|t|exp (—ig), (6.1)
where o is the absorption constant of the material, d is its thickness and n is
its refractive index. Accordingly, as mentioned earlier, holographic record-
ing materials can be classified, for convenience, either as pure amplitude-
modulating materials if only « changes with the exposure, or as pure phase-
modulating materials if «~ 0 and either n or d changes with the exposure.
The response of the recording material, defined by (6.1), can be described
in these two limiting cases by curves of amplitude transmittance versus
exposure (|t| — E curves) as shown in fig. 6.1, or curves of the effective phase

shift against exposure (A¢ — E curves) as shown in fig. 6.2.

6.2. The modulation transfer function

While curves such as those in figs. 6.1 and 6.2 describe the
behaviour of a recording material quite satisfactorily on a macroscopic
scale, they are not, by themselves, adequate to predict the response of the
material on a microscopic scale.

As discussed in section 5.2 the intensity at any point on the hologram
recording medium is given by a relation of the form

I=({I)[1+7 cos(d,—¢,)], (6.2)
where (I) is the average intensity, ¥~ is the visibility of the interference
78
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fringes formed by the object and reference beams, and ¢, and ¢, are their
phases at this point. ‘

The actual intensity distribution to which the material is exposed is
different, because there is always a certain amount of lateral spreading of
light within the recording medium, determined by its scattering properties
and its coefficient of absorption. Because of this, the actual modulation of
the intensity within the recording material is always less than that in the
original interference pattern.

For any spatial frequency s, the ratio of ¥”(s), the actual modulation of

Fig. 6.1. Curve of amplitude transmittance |t| against exposure (E) for
a recording material.
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theintensity distribution within the material, to ¥"(s), the  Jut modulation,
is termed the modulation transfer function (or MTF) M(s), so that
M(s)=7"(s)/¥(s). (6.3)

This parameter, which is normally less than unity, serves to characterize the
relative response of the material at different spatial frequencies.

6.3. Diffraction efficiency

The diffraction efficiency & of a hologram has been defined (see
section 3.6) as the ratio of the power diffracted into the desired image to that
illuminating the hologram.

For an exposure time 7, the effective exposure of the recording material
is, from (6.2) and (6.3),

E=TI,
=T{I)[1+7 (s)M(s) cos (¢, —¢,)],
=(E)[1+7(sM(s) cos (¢,— ¢,)]. (6.4)

If we assume linear recording, as in (2.2), the amplitude transmittance of the
recording medium can be written as

t=(t)+pdE, 6.5)

where (t) is the amplitude transmittance for the average exposure (E)and
P is the value of (dt/dE) at { E). Accordingly, the amplitude transmittance of
the hologram is

t=(t) +BCEYY ()M(s) cos ($,— ). (6.6)

When the hologram is illuminated once again with the original reference
wave r, the amplitude of the reconstructed image is

uy=(1/2)rB{EYY (s)M(s), ©6.7)
and its intensity is
Iy=(1/4)rP[B{EYY ()M (s)]2. (6.8)

Accordingly, the diffraction efficiency of the hologram is
e=(1/4[BLEYY (sIM(s)].

Now, since f=(dt/dE),
PE=E(dt/dE),

=log,se - (dt/d log E),
=0.434T, (6.10)

where  I'=(dt/d log E).

The diffraction efficiency is proportional to the square of I, the gradient

i
|
|
|
|

(=) \ |

image resowtion e
of the t versus log E curve, as well as to the squares of ¥7(s), the input
modulation, and M(s), the MTF [Biedermann, 1969]. The maximum
diffraction efficiency is obtained where the slope of the t versuslog E curve is
steepest. This is usually at a slightly higher exposure than that correspond-
ing to the steepest part of the t versus E curve.

A method of characterizing recording materials for holography based on
(6.9) has also been described by Lin [1971]. For an ideal recording material,
plots of \/ e versus { E)) with ¥"(s) as a parameter and plots of \/ gversus ¥ (s)
with (E) as a parameter should be straight lines. The departure of the
characteristics of any real material from the ideal can therefore be easily
seen by comparing the actual measured curves with these. Apart from the
maximum diffraction efficiency, or the exposure needed to obtain a given
diffraction efficiency, these curves also make it possible to determine the
range of fringe visibility ¥°(s) or beam ratio R for which the hologram
recording is linear (indicated by the straight line portion of the \/ € versus

“¥"(s) curve at constant ( E)) and the value of average exposure representing

the best compromise between linearity and efficiency.

6.4. Image resolution

With an ideal recording material, the resolution of the image is
determined only by the dimensions of the hologram. However, with any
practical recording material, its MTF will, in general, affect the resolution
as well as the intensity of the reconstructed image [Kozma & Zelenka,
1970].

This is because, in most holographic systems, the spatial frequency s
varies over the hologram. It then follows from (6.9) that, due to the
corresponding variations in the MTF of the recording medium, the
diffraction efficiency of the hologram will vary over its aperture. Wherever
this variation is appreciable, it must be taken into account in evaluating the
imaging properties of the hologram.

The only exceptions to this situation are when the image is formed at or
near the hologram or with a Fourier hologram (see section 2.3). In the latter
case, the spatial frequency s is constant over the entire hologram. As a
result, the MTF of the recording medium only affects the intensity of the

“image; its resolution is determined by the aperture of the hologram.

At the other extreme, where the object and the reference source are at
different distances from the hologram, and the hologram is quite large, it is
possible for the spatial frequency s to exceed the resolution limit of the
recording material over part of the hologram. Thislimits the useful aperture
of the hologram and, hence, the resolution of the image.
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noise distribution for a diffusely illuminated objec.. Unfortunately, the
expressions obtained are quite complicated. This difficulty is partly over-
come in an alternative treatment by Tischer [1970] based on the use of
Chebyshev polynomials. With simple objects such as lines and points, the

terms of the series represent corresponding pairs of ghost images, so that, in -

principle, the optimum operational conditions can be evaluated readily.

However, the polynomial method has limitations, as pointed out by
Velzel [1973], who was able to develop a complete theory of nonlinear
holographic image formation using a modified transform method, and
derive analytical expressions for the efficiency and the image contrast for
recording media with an exponential characteristic (a linear phase holo-
gram) and a binary characteristic. A generalization of this theory which can
be used where the transfer function of the recording medium is complex has
been outlined by Ghandeharian & Boerner [1977].

6.6. Effect of hologram thickness

Intermodulation effects would make it almost impossible to
produce bright holographic images of good quality but for the fact that,ina
volume hologram, intermodulation noise is reduced significantly by the
angular selectivity of the hologram (see sections 4.4 and 4.5).

Consider a simple object consisting of only two points, which gives rise to
two sets of interference fringes with the reference beam having spatial
frequencies s,; and s,,. The intermodulation terms then have the general
form psq; £ 9502, Where p and g are positive integers. Most of the resultant
spatial frequencies are therefore significantly different from those cor-
responding to the object points. Qualitatively, it is apparent that when the
hologram is illuminated once again with the same reference beam used to
record it, the Bragg condition will not be satisfied for these intermodulation
frequencies [Upatnieks & Leonard, 1970].

A detailed analysis of intermodulation noise in a volume hologram due—_ |

to nonlinear recording has been made by Guther & Kusch [1974], using the
coupled wave theory (see section 4.3). Their results show that the noise is
effectively limited by the thickness of the recording medium as well as by the
aperture of the hologram. A simpler analysis by Hariharan [1979a] shows
that if the angle between the two beams in the recording setup is large
enough for the diffracted beams corresponding to different orders not to
overlap, the signal-to-noise ratio should improve by a factor approximately
equal to (/AB) where 2A6 is the width of the passband of the angular
selectivity function, and  is the angular extent of the object.
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6.7. Noise . .
In optical holography, noise is a convenient term for non-image-

forming light which is diffracted or scattered in the same general direction
as the reconstructed image. .

If we exclude noise generated by nonlinear effects, which has bt.zen
discussed in section 6.5, the other source of noise with recording‘mgtel:rlals
such as photographic emulsions is scattered light .from the individual
grains, which are distributed in the emulsion layer in a random manner
[Goodman, 1967; Kozma, 1968a]. . .

The noise spectrum of a photographic material can be studied with the
optical system shown in fig. 6.3. If a uniformly exposed photographic plate
with an amplitude transmittance t(x, y) is placed in front of the lens and
illuminated with a collimated beam of monochromatic light, the diffracted
amplitude at any point (xy, yy) in the back focal plane of the lens is (see
Appendix A2.3)

alx,, y,)=(a/af) exp [(—in/Af )5+ yPITE ), (6.15)
where a is the amplitude of the plane wave illuminating the plate, f is the
focal length of the lens and t(x, y)T(, n); & and 7 are spatial frequencies
defined by the relations {=x,/A, =y /2.

The intensity at this point is then

I(x;, y7)=laCxs y I,

. =(a izfé)lT(E, mi?. (6.16)

Fig. 6.3. Arrangement for measuring the noise spectrum of
photographic materials used for holography.
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If this is averaged over a large enough area to climiriauc]local fluctuations
due to speckle, it can be written as _
I, m)=@*/2*f*)S(&, n), (6.17)

where S(¢, n) is the power spectrum of the transmittance of the plate.

To eliminate effects due to diffraction at the edges of the sample, a second
. lens is normally used to image the sample on to another aperture placed in
front of the detector. The effective area of the sample is then the projection
of this aperture on the sample. Since this is proportiohal to 1/cos 6, it also
‘compensates for the decrease in the effective passband of the collecting
aperture [Biedermann & Johansson, 1975].

6.8. Signal-to-noise ratio with coherent illumination

In computing the signal-to-noise ratio in the image reconstructed
by a hologram, it is necessary to take into account the fact that it is the
amplitudes of the signal and the noise which have to be added, since they are
both encoded on the same coherent carrier [ Goodman, 1967].

Consider the reconstructed image of an object consisting of a bright
patch on a dark background. Let the intensity due to the nominally uniform
signal be I, while that of the randomly varying background is Iy. The noise
N .in the bright area can be defined as the variance of the resulting
fluctuations of the intensity, and is given by the relation

N=[{I*)—(I)*]*?, (6.18)
where I is the intensity at any point and (I) is the average intensity.
Since ay the complex amplitude of the background has circular statistics
(see Appendix A4), the mean value of terms involving ay or af as well as
powers of ay and af, other than those involving only |ay|?, is zero. Hence, if
a, is the complex amplitude of the signal, the average intensity is

(Iy={(a,+ay)a}+a})), ——
={I,+Iy+aa}+alay),
=1+ {Iy). (6.19)
Similarly, '
(I*)=(Ui+Iy+aa}+atay)?),
=(I+ I3 +411), '
=17+ (I3 +4I{Iy). (6.20)

However, from (A4.4) and (A4.5), (I%) =2(Iy)?, so that
<12>=If+2<1N>2+4I{<1N>. (6.21)
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Accordingly, from (6.18), (6.19) and (6.21) we have
N=[{Iy)*+2ILIx)]*?,

={I[1+@IK I, (622)
so that the signal-to-noise ratio is
I/N=I/{Iy)[1 +QIIN]Y2 (6.23)

In the limiting case when I;> (Iy) (which is usually the situation for a
hologram recording of good quality), the signal-to-noise ratio becomes
I/N =(I,/2{Iy))"'%. (6.24)
With coherent illumination, the signal-to-noise ratio is proportional to
the square root of the ratio of the intensities of the signal and the scattered
background. Even a weak scattered background leads to relatively large
fluctuations in intensity in the bright areas of the image.
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Practical recording media

The ideal recording material for holography should have a spectral
sensitivity well matched to available laser wavelengths, a linear transfer
characteristic, high resolution and low noise. In addition, it should either be
indefinitely recyclable or relatively inexpensive.

While several materials have been studied [Smith, 1977; Hariharan,
1980b], none has been found so far that meets all these requirements.
However, a few have significant advantages for particular applications.
This chapter reviews, in the light of the general considerations discussed in
Chapter. 6, the properties of some of these materials (see Table 7.1 for a
summary of their principal characteristics).

7.1. Silver halide photographic emulsions

Silver halide photographic emulsions are still the most widely used -
recording material for holography, mainly because of their relatively high
sensitivity and because they are commercially available. In addition, they
can be dye sensitized so that their spectral sensitivity matches the most
commonly used laser wavelengths. '

An apparent drawback of photographic materials is that they need wet
processing and drying; however, development is actually an amplification
process, with a gain of the order of 105, which yields high sensitivity as well
as astable hologram. Another advantage of the formation of a latent image
is that the optical properties of the recording medium do not change during
the exposure, unlike materials in which the image is formed in real time.
This makes it possible to record several holograms in the same photo-
graphic emulsion without any interaction between them. -

Data on some of the silver halide photographic emulsions available for
holography are summarized in Table 7.2, while typical |t| versus E and
spectral sensitivity curves are presented in figs. 7.1 and 7.2. Most of these
emulsions are available coated on glass plates or film in a range of sizes and
normally have an antihalation backing. Plates without any antihalation
backing are available for making reflection holograms, though it is also
possible to remove the antihalation backing with alcohol.
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Table 7.1. Recording materials for holography

Max. diffraction
efficiency

Spectral

(sine grating)

limit mm ™!

Resolution

sensitivity

Exposure
Type of hologram  required J/m? nm

Reusable Processing

Material

1000-10000  0.05

400-700

5x1073-5x107?

Amplitude (normal)
Phase (bleached)

No Wet chemical
Phase

Photographic emulsions

0.60
0.90
0.30
0.90
0.02
0.30

> 10000
3000

350-580
uv-500

uv-650

10?

102

No Wet chemical

Dichromated gelatin

Photoresists

4

Phase

Wet chemical

Post exposure

None

No

200-1500

10-10*

10*-10°

Phase

No

Photopolymers
Photochromics

> 5000
500-1200

300-700

Amplitude
Phase

Yes

Charge and heat 107* 400-650

Yes

Photothermoplastics

(bandpass)

Photorefractive

0.20
- 025

>1500

350-500

10*
10

Phase

None

Yes

LiNbO,

>10000

350-550

Phase

None

Yes

Bi, ,Si0,,




12.82. Multiple imaging using lensless Fourier b grams

. This technique, developed by Groh [1968], uses a much simpler
op'ncal setup. In the first step, a lensless Fourier hologram of an array of
point sources P, ... P, is recorded with a point reference source R.

To use this hologram to generate multiple images, it is illuminated with
the 'con:jugate to the original reference wave by means of a lens pIaced'
behind it, as shown in fig. 12.9. The hologram then produces real images of
the' array of object points P, ... P, in their original positions. If then, the
point source is replaced by an illuminated transparency, an array of im’ages

of ‘the transparency are formed, centred on the positions of the original
point sources P, ... P,.

A variation of these methods [Kalestynski, 1973, 1976] is to record a
pologram of _the transparency using multiple reference beams. When
illuminated with a single reference beam, this hologram then produces an
array of images.

Problems arise with all these techniques, due to cross-talk, if the
hologram recording is not strictly linear. These can be avoided, at the
expense of a considerable reduction in diffraction efficiency, if the hologram
is produced by successive exposures using individual object beams
separately, rather than all of them together. Another problem is that only

the centres of the images are free from aberrations, Accordingly, the -

individual images must subtend only a small angle at the hologram.

Fig. 12.8. Multiple-image generation by a Fouri
[Lu, 1968]. : y a Fourier hologram
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129. Holographic wifraction gratings -
raction gratings formed by recording an interference pattern in

a suitable light-sensitive medium (now commonly called holographic
diffraction gratings) are rapidly replacing conventional ruled gratings in
spectroscopy. While Burch & Palmer [1961] first showed that transmission
gratings could be made by photographing interference fringes using silver
halide emulsions, it was the use of photoresist layers coated on optically
worked blanks which finally led to the production of spectrographic
gratings of high quality [Rudolph & Schmahl, 1967; Labeyrie & Flamand,
19697]. After processing, these yield a relief image (see section 7.3) which can
be coated with an evaporated metal layer and used as a reflection grating.

Holographic gratings have several advantages over ruled gratings.
Besides being cheaper and simpler to produce, they are free from periodic
and random errors and exhibit much less scattered light. In addition, it is
possible to produce much larger gratings of finer pitch, as well as gratings
on substrates of varying shapes, and gratings with curved grooves and
varying pitch. This makes it possible to produce gratings with unique
focusing properties and opens up the possibility of new designs of
spectrometers (see, for example, the review by Namioka, Seya & Noda
[1976)).

Against this, their main disadvantage is that the groove profile cannot be

Fig. 12.9. Multiple imaging by means of a hologram of an array of
point sources [Groh, 1968].
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c?ntrollcd as easily as in ruled gratings. While eve
give quite high diffraction efficiencies for very small grating spacings (~ 1)
[Loewen, Maystre, McPhedran & Wilson, 1975] it is usually necessary to
produc? a triangular groove profile for maximum diffraction efficienc

Accordingly, a number of methods have been proposed for the productioj;ll

of blazed holographic gratings (see, for example, t i

Rudolph [1976] and by Hutley [1976, 198213). pereviens by Sehmati &
One method of achieving this result is to expose the photoresist to a

sawtooth irradiance distribution, which is built up by a process of Fourier

syntl:lesis, either by using more than two beams to producc‘thc fringes, or b

making multiple exposures to fringe patterns of appropriate period’icitjez

)sinusoidal profile can

and phases [McPhedran, Wilson & Waterworth, 1973; Schmahl, 1975: -

Breidne, Johansson, Nilsson & Ahlen, 1979].

Anotlhcr possibility which has been explored is to start with a sinusoidal
or 1I;rafrnzfnlle)criblazecl profile and modify it by ion-beam etching to produce a
well-formed triangular profile i ; i
N 10 gular p [Aoyagi & Namba, 1976; Aoyagi, Sano &

In the most widely used method, however, [Sheridon, 1968: Hutley
1975] t.he photoresist layer is aligned obliquely to the fringe ps;ttern as:
sho-wn in fig. 12.10. This produces, within the thickness of the resist la);ers
which are alternately soluble and insoluble. After development, the ;urface
profile is determined by the shape of the insoluble layers near ,the surface,
The only disadvantage of this technique is that one of the beams is incident.
through the back of the blank, which must therefore be of optical quality,

: 9122]12 10. The production of blazed gratings in photoresist [Hutley,

Shape of surface
after development
Interference

fringes
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Photoresist Blank
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An optical systen. 1‘ this purpose is shown in fig. 12.11. In this, light from
an Ar* laser (=458 nm) is split into two beams of equal intensity which
are focused by microscore objectives on pinholes. Each pinhole is located
at the focus of an off-axis parabolic mirror, so that a collimated beam is
obtained upon reflection from the mirror. As shown in fig. 12.10, the
photoresist-coated blank is placed in the interference field at a small angle
to the standing waves.

To produce gratings of good quality, the optics must produce wavefronts
plane to 4/10. The liquid photoresist is applied to the optically worked
blank, which is then spun rapidly to produce a uniform layer, about 0.5 ym
thick. In addition to the precautions normally taken to ensure stability of
the fringes during the exposure, a closed-loop servo system is used to
maintain the optical path difference in the interferometer stable to better
than A/50. -

12.10. Holographic scanners
Holographic scanners are a relatively new development which
could solve many of the problems associated with mirror scanners. Their
most promising applications are in point-of-sale terminals and, with a
modulated laser beam, for high-speed non-impact printing.
A simple disc holographic scanner [ Cindrich, 1967; McMahon, Franklin
& Thaxter, 1969] is shown in fig. 12.12. The disc has a number of holograms

Fig. 12.11. Optical system used to produce blazed holographic
gratings [courtesy I. G. Wilson, CSIRO Division of Chemical Physics,
Melbourne, Australia].
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