Publikationen und Projekte der AG Kubsch
Publikationen
2025
|
Martin, P., Kubsch, M., Yik, B. J., Burlingham, B. T., Graulich, N., (2025). Adaptive, but Equitable? Exploring the Impact of Machine Learning-Based Adaptive Support on Educational Debts in Undergraduate Chemistry. Science Education. Wulff, P., & Kubsch, M. (2025). Learning against the machine: the doubleedged sword of (Gen)AI in STEM education. International Journal of STEM Education, 12, 66. Springer Nature Link. Domenichini, D., Strauß, S., Gombert, S., Rummel, N., Drachsler, H., Neumann, K., Chiarello, F., Fantoni, G., & Kubsch, M.(2025). Leveraging AI and network analysis to uncover learning trajectories of energy to Foster knowledge-in-use in science education. Disciplinary and Interdisciplinary Science Education Research 7, 28. Springer Nature Link. Sorge, S., Wulff, P. & Kubsch, M. (2025). Using a large language model to provide individualized feedback for pre-service physics teachers’ written reflections. Disciplinary and Interdisciplinary Science Education Research 7, 25. Springer Open. https://doi.org/10.1186/s43031-025-00145-9 Wyrwich, T., Domenichini, D., Gombert, S., Kubsch, M., & Neumann, K. (2025). Characterizing students’ energy learning trajectories. Disciplinary and Interdisciplinary Science Education Research 7, 23. Springer Open. https://doi.org/10.1186/s43031-025-00141-z Kranz, J., Dau, H., & Kubsch, M. (2025). Zukunft gestalten lernen in Zeiten der Klimakrise. Transformatives Lernen in der naturwissenschaftlichen Bildung. In D. Pijetlovic, J. von Au, & Virtuelle Akademie Nachhaltigkeit (VAN) (Hrsg.) Klimawandel und Bildung. Konzepte, Methoden und Perspektiven transformativer Klimabildung (S. 53-71). oekom. Hur, P., Yilmaz, C., & Kubsch, M. (2025). Mit KI einfacher differenzieren. Differenziertes Material für den Physikunterricht mithilfe von generativer KI erstellen. Naturwissenschaften im Unterricht Physik, 209, 11-18. Kubsch, M. (2025). Certainly Productive — A Review of Productive Uncertainty in Science Education by Eve Manz: The Physics Educator, 07, 2580002. https://doi.org/10.1142/S2661339525800022 Hur, P., & Kubsch, M. (2025). Navigating Trust and Transparency: The Role of XAI in Supporting Education and EU Regulatory Measures. In S. Papadakis (Ed.), AI in Early Education: Integrating Artificial Intelligence for Inclusive and Effective Learning (pp. 248-266). Wiley. https://doi.org/10.1002/9781394352821.ch15 Tschisgale, P., Maus, H., Kieser, F., Kroehs, B., Petersen, S., & Wulff, P. (2025). Evaluating GPT- and reasoning-based large language models on Physics Olympiad problems: Surpassing human performance and implications for educational assessment. Physical Review Physics Education Research, 21 (2), 020115. https://doi.org/10.1103/6fmx-bsnl Hur, P., Twidale, M., & Bosch, N. (2025). “Like driving in a storm at night”: How students use metaphors to describe confusion during learning. In A. Rajala, A. Cortez, R. Hofmann, A. Jornet, H. Lotz-Sisitka, & L. Markauskaite (Eds.), Proceedings of the 19th International Conference of the Learning Sciences – ICLS 2025 (pp. 2973–2975). International Society of the Learning Sciences. https://doi.org/10.22318/icls2025.443156 Kubsch, M., Neumann, K., Nordine, J., & Fortus, D. (2025). Investigating the role of perceived intra-unit coherence for science learning. In A. Rajala, A. Cortez, R. Hofmann, A. Jornet, H. Lotz-Sisitka, & L. Markauskaite (Eds.), Proceedings of the 19th International Conference of the Learning Sciences - ICLS 2025 (pp. 305–313). International Society of the Learning Sciences. https://doi.org/10.22318/icls2025.409417 Stinken-Rösner, L., Pannullo, L., & Kubsch, M. (2025). Ich gehöre dazu! Physikidentität: Wege zur Stärkung des Zugehörigkeitsgefühls in der Physik. Physik Journal, 6, 38. Wyrwich, T., Kubsch, M., Drachsler, H., & Neumann, K. (2025). Tracking students’ progression in developing understanding of energy using AI technologies. Physical Review Physics Education Research, 21, 010152. https://doi.org/10.1103/PhysRevPhysEducRes.21.010152 Kubsch, M., Strauß, S., Grimm, A., Gombert, S., Drachsler, H., Neumann, K., & Neumann, N. (2025). Self-regulated learning in the digitally enhanced science classroom: Toward an early warning system. Educational Psychology Review, 37, 34. https://doi.org/10.1007/s10648-025-10011-9 Fiedler, K., Kubsch, M., Neumann, K., & Nordine, J. (2025). Supporting learning about energy with fields—evidence from a mixed-methods study. Journal of Research in Science Teaching. https://doi.org/10.1002/tea.70006 Tschisgale, P., Wulff, P., & Kubsch, M. (2025). Erratum: Integrating artificial intelligence-based methods into qualitative research in physics education research: A case for computational grounded theory. [Physical Review: Physics Education Research, 19, 020123. (2023)]. Physical Review Physics Education Research, 21, 019901.https://doi.org/10.1103/PhysRevPhysEducRes.21.019901 Wulff, P., Kubsch, M., & Krist, K. (Eds.).(2025). Applying Machine Learning in Science Education Research. When, How, and Why? Springer. https://link.springer.com/book/10.1007/978-3-031-74227-9 Nehring, A., Buschhüter, D., Kubsch, M., Ludwig, T., Wulff, P., & Neumann, K. (2025). Künstliche Intelligenz in den Naturwissenschaftsdidaktiken – gekommen, um zu bleiben: Potenziale, Desiderata, Herausforderungen. Zeitschrift für Didaktik der Naturwissenschaften, 31, 2. Springer. https://doi.org/10.1007/s40573-025-00177-8 |
|
Tschisgale, P., Kubsch, M., Wulff, P., Petersen, St., & Neumann, K. (2025). Exploring the sequential structure of students’ physics problem-solving approaches using process mining and sequence analysis. Physical Review Physics Education Research, pp. 1-21. https://journals.aps.org/prper/abstract/10.1103/PhysRevPhysEducRes.21.010111 |
2024
|
Kubsch, M., Grimm, A., Neumann, K., Drachsler, H., & Rummel, N. (2024). Using Evidence-Centered Design to Develop an Automated System for Tracking Students’ Physics Learning in a Digital Learning Environment. In X. Zhai & J. Krajcik (Eds.), Uses of Artificial Intelligence in STEM Education (pp. 230-240). Oxford University Press. Borgards, L., Karademir, O., Strauß, S., Di Mitri, D., Kubsch, M., Brobeil, M., Grimm, A., Gombert, A., Neumann, K., Drachsler, H., Scheffel, M., & Rummel, N. (2024). Achieving tailored feedback by means of a teacher dashboard? Insights into teachers’ feedback practices. In R. F. Mello, N. Rummel, I. Jivet, G. Pishtari, & J. A. Ruipérez Valiente (Eds.), Technology-enhanced learning for inclusive and equitable quality education (pp. 75–80). Springer. Ludwig, T., Kubsch, M., Sorge, St., & Kardas, E. (2024, August). Quellen von Unsicherheit beim Experimentieren - Welche Rolle spielen verschiedene Arten von Unsicherheit beim Experimentieren? Beitrag präsentiert an der GDCP Jahrestagung 2023 in Hamburg, Deutschland (S. 846–849). https://gdcp-ev.de/wp-content/uploads/securepdfs/2024/07/Tagungsband_2024.pdf Tautz, S., Sorge, St., & Kubsch, M. (2024). Mithilfe von Bayesian Updating Activities zur epistemischen Kognition? Beitrag präsentiert an der GDCP Jahrestagung 2023 in Hamburg, Deutschland (S. 746–749). https://gdcp-ev.de/wp-content/uploads/securepdfs/2024/07/Tagungsband_2024.pdf Karademir, O., Borgards, L., Di Mitri, D., Strauß, S., Kubsch, M., Brobeil, M., Grimm, A., Gombert, S., Rummel, N., Neumann, K., & Drachsler, H. (2024). Following the Impact Chain of the LA Cockpit. An Intervention Study Investigating a Teacher Dashboard’s Effect on Student Learning. Journal of Learning Analytics, (pp. 1–14). Nordine, J., Kubsch, M., Fortus, D., Krajcik, J., & Neumann, K. (2024). Middle school students' use of the energy concept to engage in new learning: What ideas matter? Journal of Research in Science Teaching, 1–32. Karademir, O., Di Mitri, D., Schneider, J., Jivet, I., Allmang, J., Gombert,S.,Kubsch, M., Neumann, K., & Drachsler, H. (2024). I don't have time! But keep me in the loop: Co-designing requirements for a learning analytics cockpit with teachers. Journal of Computer Assisted Learning,1–19. https://doi.org/10.1111/jcal.12997 Fiedler, K., Kubsch, M., Neumann, K., & Nordine, J. (2024). Der potentiellen Energie ein Zuhause geben. In M. Hopf & M. Becker (Hrsg.), Energie (S. 10–15). Verein zur Förderung des physikalischen und chemischen Unterrichts. |
|
Kubsch, M., & Nordine, J. (2024). Auf das System kommt es an. In M. Hopf & M. Becker (Hrsg.), Energie (S. 16–20). Verein zur Förderung des physikalischen und chemischen Unterrichts. |
|
Tschisgale, P., Steegh, A., Petersen, S., Kubsch, M., Wulff, P. & Neuman, K. (2024). Are science competitions meeting their intentions? a case study on affective and cognitive predictors of success in the Physics Olympiad. |
|
Kubsch, M. (2024). What affects the continued learning about energy? Evidence from a 4-year longitudinal study. |
|
Tschisgale, P., Steegh, A., Kubsch, M., Petersen, S., & Neumann, K. (2024). Towards a more individualised support of science competition participants – identification and examination of participant profiles based on cognitive and affective characteristics. International Journal of Science Education. https://doi.org/10.1080/09500693.2023.2300147 |
|
Graulich, N., Arnold, J., Sorge, S., & Kubsch, M. (2024). Lehrkräftebildung von morgen - Beiträge der Naturwissenschaftsdidaktiken zur Förderung überfachlicher Kompetenzen. Waxmann. https://doi.org/10.31244/9783830997962 |
|
Nauermann, L., Sorge, S., Garrecht, C., Bernholt, S., Kubsch, M., & Steegh, A. (2024). Gemeinsam globale Herausforderungen angehen - Ein Seminarkonzept zur Erstellung digitaler Unterrichtsmaterialien in den Naturwissenschaften. In Graulich, N., Arnold, J., Sorge, S., & Kubsch, M. (Hrsg.). Lehrkräftebildung von morgen - Beiträge der Naturwissenschaftsdidaktiken zur Förderung überfachlicher Kompetenzen (S. 159–169). Waxmann. https://doi.org/10.31244/9783830997962.17 |
|
Kubsch, M., & Neumann, I. (2024). Science Denial im naturwissenschaftlichen Unterricht begegnen. |
2023
|
Kubsch, M., Strauß, S., & Bernholt, S. (2023). Integrating perspectives to promote knowledge integration: How knowledge integration, learning progressions and instructional science can complement each other. |
|
Kubsch, M., Sorge, S., & Wulff P. (2023). Emotionen beim Reflektieren in der Lehrkräftebildung. |
|
Taylor, J. A., Bowen, G. M., Kubsch, M., Summers, R., Sezen-Barrie, A., Patrick, P., Lachapelle, C., Warfa, A., & Guzey, S. S. (2023). Crossing boundaries between research and practitioner communities: The role of research use and cross-community journal authorship. Journal of Research in Science Teaching, pp. 1–28. |
|
Krist, C., & Kubsch, M. (2023). Bias, bias everywhere: A response to Li et al. and Zhai and Nehm. Journal of Research in Science Teaching, 60(10), pp. 2395–2399. https://doi.org/10.1002/tea.21913 |
|
Tschisgale, P., Wulff, P. & Kubsch, M. (2023). Integrating artificial intelligence-based methods into qualitative research in PER – A case for computational grounded theory. Physical Review Physics Education Research, 19, 020123. https://link.aps.org/doi/10.1103/PhysRevPhysEducRes.19.020123 |
|
Fiedler, K., Kubsch, M., Neumann, K., & Nordine, J. (2023). Fields in middle school energy instruction to support continued learning of energy. Physical Review Physics Education Research, 19, 010122. |
|
Kubsch, M., Neumann, K., Rochnia, M., & Gräsel, C. (2023). 50 Jahre Unterrichtswissenschaften – Themen der empirischen Lehr-Lern-Forschung im Wandel. Unterrichtswissenschaft, 51 (S. 15–37). |
|
Grimm, A., Steegh, A., Colakogul, J., Kubsch, M., & Neumann, K. (2023). Positioning Responsible Learning Analytics in the Context of STEM Identities of Under-Served Students. Frontiers in Education, 7, 1082748. |
|
Grimm, A., Kubsch, M., Steegh, A., & Neumann, K. (2023). Learning Analytics in Physics Education: Ethical, Equity-Focused Decision-Making Lacks Guidance! Journal of Learning Analytics, 10(1), pp. 71-84. |
|
Gombert, S., Di Mitri, D., Karademir, O., Kubsch, M., Kolbe, H., Tautz, S., Grimm, A., Bohm, I., Neumann, K., & Drachsler, H. (2023). Coding energy knowledge in constructed responses with explainable NLP models. |
2022
|
Kubsch, M., Czinczel, B., Lossjew, J., Wyrwich, T., Bednorz, D., Bernholt, S., Fiedler, D., Strauß, S., Cress, U., Drachsler, H., Neumann, K., & Rummel, R. (2022). Towards Learning Progression Analytics – Developing Learning Environments for the Automated Analysis of Learning using Evidence Centered Design. |
|
Kubsch, M.,Rosenberg, J. M., & Krist, C. (2022). Distributing epistemic functions and tasks—A framework for augmenting human analytic power with machine learning in science education research. |
|
Kubsch, M., Fortus, D., Neumann, K., Nordine, J., & Krajcik, J. (2022). The interplay of students’ motivational profiles and science learning. Journal of Research in Science Teaching, 60(1), pp. 3–25. https://doi.org/10.1002/tea.21789 |
|
Rosenberg, J., Kubsch, M., Dogucu, M., & Wagenmakers, E. (2022). A Bayesian perspective on uncertainty and probability in science education. Science & Education, 31. https://doi.org/10.1007/s11191-022-00341-3 |
|
Kubsch, M., Wulff, P., & Buschhüter, D. (2022). Schwerpunkttagung Maschinelles Lernen und computerbasierte Textanalysen: Potentiale und Herausforderungen für die Naturwissenschaftsdidaktik. |
|
Kubsch, M., & Weßnigk, S. (2022). Die Wärmebildkamera im Kontext Mechanik gewinnbringend einsetzen. MNU. |
|
Fiedler, K., Kubsch, M., Neumann, K., & Nordine, J. (2022). Der potentiellen Energie ein Zuhause geben – Felder als didaktisches Hilfsmittel im Anfangsunterricht zum Energiekonzept. Zeitschrift für Didaktik der Naturwissenschaften, 28 (1), 6. https://doi.org/10.1007/s40573-022-00143-8 |
|
Kubsch, M., & Hamerski, P. C. (2022). Dynamic Energy Transfer Models. The Physics Teacher, 60(7), pp. 583–585. https://doi.org/10.1119/5.0037727 |
|
Kubsch, M., Caballero, D., & Uribe, P. (2022). Once More with Feeling: Emotions in Multimodal Learning Analytics. |
2021
|
Kubsch, M., Sorge, S., Arnold, J., & Graulich, N. (2021). Lehrkräftebildung neu gedacht – Ein Praxishandbuch für die Lehre in den Naturwissenschaften und deren Didaktiken. Waxmann. |
|
Kubsch, M., Rosenberg, J. M., & Krist, C. (2021). Beyond Supervision: Human / Machine Distributed Learning in Learning Sciences Research. In de Vries, E., Hod, Y., & Ahn, J. (Hrsg.). Proceedings of the 15th International Conference of the Learning Sciences - ICLS 2021. (pp. 897-898). International Society of the Learning Sciences. https://repository.isls.org//handle/1/7609 |
|
Rosenberg, J. M., & Kubsch, M. (2021). Considering K-12 Learners’ Use of Bayesian Methods. |
|
Sorge, S., Kubsch, M., Breuer, J., Syskowski, S., & Wöhlke, C. (2021). Lehrkräftebildung neu gedacht – Ergebnisse des GDCP Hackathon 2020. In S. Habig (Hrsg.). Naturwissenschaftlicher Unterricht und Lehrerbildung im Umbruch?. Gesellschaft für Didaktik der Chemie und Physik, Online Jahrestagung 2020. (41st ed., S. 45-47). |
|
Kubsch, M., Opitz, S., Nordine, J., Neumann, K., Fortus, D., & Krajcik, J. (2021). Exploring a pathway towards energy conservation through emphasizing the connections between energy, systems, and fields. |
|
Kubsch, M., Stamer, I., Steiner, M., Neumann, K., & Parchmann, I. (2021). Beyond p-values: Using Bayesian Data Analysis in Science Education Research. Practical Assessment, Research and Evaluation. |
|
Kubsch, M., & Sorge, S. (2021). Unterstützungsmöglichkeiten beim Erklären und Argumentieren im Physikunterricht. |
|
Fischer, J., Steinmann, T., Kubsch, M., Laumann, D., Weßnigk, S., Neumann, K., & Kerres, M. (2021). Die Rettung der Phänomene! - Phänomenbasiertes Lernen initiieren und strukturieren durch Leitfragen. MNU. |
2020
|
Bowen, M., Taylor, J., Patrick, P., Summers, R., Kubsch, M., Warfa, A., Sezen-Barrie, A., Guzey, S. & Lachapelle, C. (2020). Understanding the Use of Academic Research in Science Education Practitioner Journals. Journal of the Canadian Association for Curriculum Studies, 18 (1), pp. 151–153. https://doi.org/10.25071/1916-4467.40452 |
|
Kubsch, M., Nordine, J., Fortus, D., Krajcik, J. & Neumann, K. (2020). Supporting Students in UsingEnergy Ideas to Interpret Phenomena: The Role of an Energy Representation. International Journal of Science and Mathematics Education, 18 (8), pp. 1635–1654. https://doi.org/10.1007/s10763-019-10035-y |
|
Kubsch, M., Touitou, I., Nordine, J., Fortus, D., Neumann, K. & Krajcik, J. (2020). Transferring Knowledge in a Knowledge-in-Use Task—Investigating the Role of Knowledge Organization. Education Sciences, 10 (1), 20. Article. http://dx.doi.org/10.3390/educsci10010020 |
2019
|
Stamer, I., Kubsch, M., Thiele, M., Höffler, T., Schwarzer, S. & Parchmann, I. (2019). Scientists, Their Work, and how Others Perceive Them: Self-Perceptions of Scientists and Students’ Stereotypes. Research in Subject-matter Teaching and Learning (2nd, pp. 85-101). https://doi.org/10.23770/rt1826 |
|
Kubsch, M. & Cukurova, M. (2019). Diagnosing Student Competencies about the Concept of Energy in a Digital Learning Environment. In Lautenbach, C., Fischer, J., Zlatkin-Troitschanskaia, O., Toepper, M. & Pant, H. A (Hrsg.), Student Learning Outcomes Assessment in Higher Education - Ideas, Approaches and Concepts for Research, Transfer and Implementation: KoKoHs Working Papers. |
|
Fortus, D., Kubsch, M., Bielik, T., Krajcik, J., Lehavi, Y., Neumann, K., Nordine, J., Opitz, S. & Touitou, I. (2019). Systems, transfer, and fields: Evaluating a new approach to energy instruction. |
|
Kubsch, M., Nordine, J., Neumann, K., Fortus, D. & Krajcik, J. (2019). Probing the Relation between Students’ Integrated Knowledge and Knowledge-in-Use about Energy using Network Analysis. |
|
Kubsch, M., Nordine, J., Neumann, K., Fortus, D. & Krajcik, J. (2019). Measuring Integrated Knowledge – A Network Analytical Approach. In Rethinking Learning in the Digital Age. Making the Learning Sciences Count. |
2018
|
Kubsch, M., Nordine, J. & Neumann, K. (2018). Der System-Transfer-Ansatz. Den Energietransfer zwischen Systemen ins Zentrum stellen. Naturwissenschaften im Unterricht. Physik, 29 (164), S. 24–27. |
|
Kubsch, M., Nordine, J., Neumann, K., Fortus, D. & Krajcik, J. (2018). Lerntrajektorien im Energiekonzept. |
|
Kubsch, M. & Nordine, J. (2018). Energietransferdiagramme als kognitive Unterstützung in der Mittelstufe. |
2017
|
Kubsch, M., Nordine, J. & Hadinek, D. (2017). Using smartphone thermal cameras to engage students’ misconceptions about energy. The Physics Teacher, 55 (8), pp. 504–505. https://doi.org/10.1119/1.5008354 |
2016
|
Kubsch, M., Illenseer, T. F. & Duschl, W. J. (2016). Accretion disk dynamics: α-viscosity in self-similar self-gravitating models. Astronomy & Astrophysics, 588, A22. https://doi.org/10.1051/0004-6361/201527092 |
2014
|
Meißner, M., & Haertig, H. (2014). Smartphone astronomy. The Physics Teacher, 52 (7), pp. 440–441. https://doi.org/10.1119/1.4895369 |
Schlagwörter
- Publikationen
