Work on simulating non-equilibrium quantum dynamics in Nature Physics
Combining flow equations with scrambling techniques and error bounds, we present a new way to address the classical simulation of quantum dynamics for intermediate times.
The study of many-body quantum dynamics in strongly-correlated systems is extremely challenging. To date few numerical methods exist which are capable of simulating the non-equilibrium dynamics of two-dimensional quantum systems, in part reflecting complexity theoretic obstructions. In this work, published in Nature Physics, we present a new technique able to overcome this obstacle, by combining continuous unitary flow techniques with the newly developed method of scrambling transforms. We overcome the prejudice that approximately diagonalizing the Hamiltonian cannot lead to reliable predictions for relatively long times. To the contrary, we show that the method works well in both localized and delocalized phases, and makes reliable predictions for a number of quantities including infinite-temperature autocorrelation functions. We complement our findings with rigorous incremental bounds on the truncation error. This approach shows that in practice, the exploration of intermediate-scale time evolution may be more feasible than is commonly assumed, challenging near-term quantum simulators.
News from Jul 03, 2024