Work on quantum field machines in PRX Quantum
Recent years have enjoyed an overwhelming interest in quantum thermodynamics, a field of research aimed at understanding thermodynamic tasks performed in the quantum regime. Further progress, however, seems to be obstructed by the lack of experimental implementations of thermal machines in which quantum effects play a decisive role. In this work, we introduce a blueprint of quantum field machines, which - once experimentally realized - would fill this gap. We provide a detailed proposal how to realize a quantum machine in one-dimensional ultra-cold atomic gases using a set of modular operations giving rise to a piston that can be coupled sequentially to thermal baths with the innovation that a quantum field takes up the role of the working fluid. We study the operational primitives numerically in the Tomonaga-Luttinger liquid framework proposing how to model the compression of the system during strokes of a piston and the coupling to a bath giving rise to a valve controlling phononic heat flow. By composing the numerically modeled operational primitives we design complete quantum thermodynamic cycles that are shown to enable cooling and hence giving rise to a quantum field refrigerator. The active cooling achieved in this way can operate in regimes where existing cooling methods become ineffective. We describe the consequences of operating the machine at the quantum level and give an outlook of how this work serves as a road map to explore open questions in quantum information, quantum thermodynamics and the study of non-Markovian quantum dynamics. This work has been published in PRX Quantum and has enjoyed a substantial coverage in the scientific press.
News from Jun 16, 2021