Springe direkt zu Inhalt


Peer-Reviewed Articles


Procacci, B.; Wrathall,S. L. D.; Farmer, A. L.; Shaw, D. J.; Greetham, G. M.; Parker, A. W.; Rippers, Y.; Horch, M.; Lynam, J. M.; Hunt N. T. "Understanding the [NiFe] Hydrogenase Active Site Environment through Ultrafast Infrared and 2D-IR Spectroscopy of the Subsite Analogue K[CpFe(CO)(CN)2] in Polar and Protic Solvents" J. Phys. Chem. B 2024, 128, 1461−1472. https://doi.org/10.1021/acs.jpcb.3c07965


Wrathall, S. L. D.; Procacci, B.; Horch, M.; Saxton, E.; Furlan, C.; Walton, J.; Rippers, Y.; Blaza, J. N.; Greetham, G. M.; Towrie, M.; Parker, A. W.; Lynam, J.; Parkin, A.; Hunt N. T. “Ultrafast 2D-IR Spectroscopy of [NiFe] Hydrogenase from E. coli Reveals the Role of the Protein Scaffold in Controlling the Active Site Environment” Phys. Chem. Chem. Phys. 2022, 24, 24767–24783. https://doi.org/10.1039/D2CP04188J

Kulka-Peschke, C.; Schulz, A.-C.; Lorent C.; Rippers, Y.; Wahlefeld, S. M.; Preissler, J.; Schulz, C.; Wiemann, C.; Bernitzky, C. C. M.; Karafoulidi-Retsou, C.; Wrathall, S. L. D.; Proccacci, B.; Matsuura, H.; Greetham, G. M.; Teutloff, C.; Lauterbach L.; Higuchi, Y.; Ishii, M.; Hunt, N. T.; Lenz, O.; Zebger, I.; Horch, M. “Reversible Glutamate Coordination to High-Valent Nickel Protects the Active Site of a [NiFe] Hydrogenase from Oxygen” J. Am. Chem. Soc. 2022, 144, 17022–17032. https://doi.org/10.1021/jacs.2c06400

Rippers, Y.; Procacci B.; Hunt, N. T.; Horch, M. “Understanding 2D-IR Spectra of Hydrogenases: A Descriptive and Predictive Computational Study” Catalysts. 2022, 12, 988. https://doi.org/10.3390/catal12090988


Lorent, C.; Pelmenschikov, V.; Schoknecht, J.; Frielingsdorf, S.; Caserta, G.; Yoda, Y.; Wang H.; Tamasaku, K.; Lenz, O.; Cramer S.; Horch, M.; Lauterbach, L.; Zebger I. “Exploring Structure and Function of Redox Intermediates of [NiFe]-hydrogenases by an Advanced Experimental Approach for Solvated, Lyophilized and Crystallized Metalloenzymes” Angew. Chem. Int. Ed. 2021, 60, 15854–15862. https://doi.org/10.1002/anie.202100451


Lorent, C.; Katz, S.; Duan, J.; Kulka, C.; Caserta, G.; Teutloff, C.; Winkler, M.; Happe, T.; Horch, M.; Zebger, I. “Shedding Light on Proton and Electron Dynamics in [FeFe] Hydrogenase” J. Am. Chem. Soc. 2020, 142, 5493–5497. https://doi.org/10.1021/jacs.9b13075


Ilina, Y.; Lorent, C.; Katz, S.; Jeoung, J.-H.; Shima, S.; Horch, M.; Zebger, I.; Dobbek, H. “X-ray Crystallography and Vibrational Spectroscopy Reveal the Structure of the H2-binding Intermediate of [NiFe] Hydrogenases” Angew. Chem Int. Ed. 2019, 58, 2–7. https://doi.org/10.1002/anie.201908258

Wilkening, S.; Schmitt, F.-J.; Lenz, O.; Zebger, I.; Horch, M.; Friedrich, T. “Discriminating Changes in Intracellular NADH/NAD+ Levels Due to Anoxicity and H2 Supply in R. eutropha Cells Using the Frex Fluorescence Sensor” BBA-Bioenergetics 2019, 1860, 148062. https://doi.org/10.1016/j.bbabio.2019.148062

Horch, M.; Schoknecht, J; Wrathall, S. L. D.; Greetham G. M.; Lenz, O.; Hunt, N. T. “Understanding the Structure and Dynamics of Hydrogenases by Ultrafast and Two-Dimensional Infrared Spectroscopy” Chem. Sci. 2019, 10, 8981–8989. https://doi.org/10.1039/C9SC02851J

Horch, M. “Rational Redox Tuning of Transition Metal Sites: Learning From Superoxide Reductase” Chem. Commun. 2019, 55, 9148–9151. https://doi.org/10.1039/C9CC04004H


Kielb, P.; Horch, M.; Wrzolek, P.; Goetz, R.; Ly, K. H.; Schwalbe, M.; Weidinger, I. M. “Hydrogen Evolution by Cobalt Hangman Porphyrins Under Operating Conditions Studied by Vibrational Spectro-electrochemistry” Catal. Sci. Technol. 2018, 8, 1849–1857. https://doi.org/10.1039/C7CY02253K

Preissler, J.; Wahlefeld, S.; Lorent, C.; Teutloff, C.; Horch, M.; Lauterbach, L.; Cramer, S. P.; Zebger, I.; Lenz, O. “Enzymatic and Spectroscopic Properties of a Thermostable [NiFe]-Hydrogenase Performing H2-Driven NAD+-Reduction in the Presence of O2BBA-Bioenergetics 2018, 1859, 8–18. https://doi.org/10.1016/j.bbabio.2017.09.006


Wilkening, S.; Schmitt, F.-J.; Horch, M.; Zebger, I.; Lenz, O.; Friedrich, T. “Characterisation of Frex as an NADH Sensor for in vivo Applications in the Presence of NAD+ and at Various pH Values” Photosynth. Res. 2017, 133, 305–315. https://doi.org/10.1007/s11120-017-0348-0

Lindenmaier, N. J.; Wahlefeld, S.; Bill, E.; Szilvasíd, T.; Eberle, C.; Yaoa, S.; Hildebrandt, P.; Horch, M.; Zebger, I.; Driess, M. “An S-Oxygenated [NiFe] Complex Modelling Sulfenate Intermediates of an O2-Tolerant Hydrogenase” Angew. Chem. Int. Ed. 2017, 56, 2208–2211. https://doi.org/10.1002/anie.201611069

Tejwani, V.; Schmitt, F.-J.; Wilkening S.; Zebger, I.; Horch, M.; Lenz, O.; Friedrich, T.; “Investigation of the NADH/NAD+ Ratio in Ralstonia eutropha Using the Fluorescence Reporter Protein Peredox” BBA-Bioenergetics 2017, 1858, 86–94. https://doi.org/10.1016/j.bbabio.2016.11.001


Horch, M.; Utesch, T.; Hildebrandt, P.; Mroginski, M. A.; Zebger, I. “Domain Motions and Electron Transfer Dynamics in 2Fe-Superoxide Reductase” Phys. Chem. Chem. Phys. 2016,18, 23053–23066. https://doi.org/10.1039/C6CP03666J

Katz, S.; Noth, J.; Horch, M.; Shafaat, H. S.; Happe, T; Hildebrandt, P.; Zebger, I. “Vibrational Spectroscopy Reveals the Initial Steps of Biological Hydrogen Evolution” Chem. Sci. 2016, 7, 6746–6752. https://doi.org/10.1039/C6SC01098A


Heidary, N.; Utesch, T.; Zerball, M.; Horch, M.; Millo, D.; Fritsch, J.; Lenz, O.; von Klitzing, R.; Hildebrandt, P.; Fischer, A.; Mroginski, M. A.; Zebger, I. “Orientation-Controlled Electrocatalytic Efficiency of an Adsorbed Oxygen-Tolerant Hydrogenase” PLoS ONE 2015, 10, e0143101. https://doi.org/10.1371/journal.pone.0143101

Ly, H. K.; Wrzolek, P.; Heidary, N.; Götz, R.; Horch, M.; Kozuch, J.; Schwalbe, M.; Weidinger, I. M. “2nd Coordination Sphere Controlled Electron Transfer of Iron Hangman Complexes on Electrodes Probed by Surface Enhanced Vibrational Spectroscopy” Chem. Sci. 2015, 6, 6999–7007. https://doi.org/10.1039/C5SC02560E

Ash, P. A.; Liu, J.; Coutard, N.; Heidary, N.; Horch, M.; Gudim, I.; Simler, T.; Zebger, I.; Lenz, O.; Vincent, K. A. “Electrochemical and Infrared Spectroscopic Studies Provide Insight into Reactions of the NiFe Regulatory Hydrogenase from Ralstonia eutropha with O2 and CO” J. Phys. Chem. B 2015, 119, 13808–13815. https://doi.org/10.1021/acs.jpcb.5b04164

Horch, M.; Hildebrandt, P.; Zebger, I. “Concepts in Bio-Molecular Spectroscopy: Vibrational Case Studies on Metalloenzymes” Phys. Chem. Chem. Phys. 2015, 17, 18222–18237. https://doi.org/10.1039/C5CP02447A

Becker, D.; Heidary, N.; Horch, M.; Gernert, U.; Zebger, I.; Schmidt, J.; Fischer, A.; Thomas, A. “Microporous Polymer Network Films Covalently Bound to Gold Electrodes” Chem. Commun. 2015, 51, 4283–4286. https://doi.org/10.1039/C4CC09637A

Horch, M.; Lauterbach, L.; Mroginski, M. A.; Hildebrandt, P.; Lenz, O.; Zebger, I. “Reversible Active Site Sulfoxygenation Can Explain the Oxygen Tolerance of a NAD+-Reducing [NiFe] Hydrogenase and Its Unusual Infrared Spectroscopic Properties” J. Am. Chem. Soc. 2015, 137, 2555–2564. https://doi.org/10.1021/ja511154y

Karstens, K.; Wahlefeld, S.; Horch, M.; Gunzel, M.; Lauterbach, L.; Lendzian, F.; Zebger, I.; Lenz, O. “Impact of the Iron−Sulfur Cluster Proximal to the Active Site on the Catalytic Function of an O2-Tolerant NAD+-Reducing [NiFe]-Hydrogenase” Biochemistry 2015, 54, 389–403. https://doi.org/10.1021/bi501347u

Lauterbach, L.; Wang, H.; Horch, M.; Gee, L. B.; Yoda, Y.; Tanaka, Y.; Zebger, I.; Lenz, O.; Cramer, S. P. “Nuclear Resonance Vibrational Spectroscopy Reveals the FeS Cluster Composition and Active Site Vibrational Properties of an O2-Tolerant NAD+-Reducing [NiFe] Hydrogenase” Chem. Sci. 2015, 6, 1055–1060. https://doi.org/10.1039/C4SC02982H


Horch, M.; Pinto, A. F.; Mroginski M. A.; Teixeira, M.; Hildebrandt, P.; Zebger, I. “Metal-Induced Histidine Deprotonation in Biocatalysis? Experimental and Theoretical Insights into Superoxide Reductase” RSC Adv. 2014, 4, 54091–54095. https://doi.org/10.1039/C4RA11976B

Horch, M.; Schoknecht, J.; Mroginski, M. A.; Lenz, O.; Hildebrandt, P.; Zebger, I. “Resonance Raman Spectroscopy on [NiFe] Hydrogenase Provides Structural Insights into Catalytic Intermediates and Reactions” J. Am. Chem. Soc. 2014, 136, 9870–9873. https://doi.org/10.1021/ja505119q

Horch, M.; Pinto, A. F.; Utesch, T.; Mroginski, M. A.; Romão, C. V.; Teixeira, M.; Hildebrandt, P.; Zebger, I. “Reductive Activation and Structural Rearrangement in Superoxide Reductase: A Combined Infrared Spectroscopic and Computational Study” Phys. Chem. Chem. Phys. 2014, 16, 14220–14230. https://doi.org/10.1039/C4CP00884G


Siebert, E.; Horch, M.; Rippers, Y.; Fritsch, J.; Frielingsdorf, S.; Lenz, O.; Velazquez Escobar, F.; Siebert, F.; Paasche, L.; Kuhlmann, U.; Lendzian, F.; Mroginski, M. A.; Zebger, I.; Hildebrandt, P. “Resonance Raman Spectroscopy as a Tool to Monitor the Active Site of Hydrogenases” Angew. Chem. Int. Ed. 2013, 52, 5162–5165. https://doi.org/10.1002/anie.201209732

Horch, M.; Rippers, Y.; Mroginski, M. A.; Hildebrandt P.; Zebger I. “Combining Spectroscopy and Theory to Evaluate Structural Models of Metalloenzymes: A Case Study on the Soluble [NiFe] Hydrogenase from Ralstonia eutrophaChemPhysChem 2013, 14, 185–191. https://doi.org/10.1002/cphc.201200853


Rippers, Y.; Horch, M.; Hildebrandt, P.; Zebger, I.; Mroginski, M. A. “Revealing the Absolute Configuration of the CO and CN Ligands at the Active Site of a [NiFe] Hydrogenase” ChemPhysChem 2012, 13, 3852–3856. https://doi.org/10.1002/cphc.201200562

Horch, M.; Lauterbach, L.; Lenz, O.; Hildebrandt, P.; Zebger, I. “NAD(H)-Coupled Hydrogen Cycling – Structure–Function Relationships of Bidirectional [NiFe] Hydrogenases” FEBS Lett. 2012, 586, 545–556. https://doi.org/10.1016/j.febslet.2011.10.010


Lauterbach, L.; Liu, J.; Horch, M.; Hummel, P.; Schwarze, A.; Haumann, M.; Vincent, K. A.; Lenz, O.; Zebger I. “The Hydrogenase Subcomplex of the NAD+-Reducing [NiFe] Hydrogenase from Ralstonia eutropha – Insights into Catalysis and Redox Interconversions” Eur. J. Inorg. Chem. 2011, 2011, 1067–1079. https://doi.org/10.1002/ejic.201001053


Horch, M.; Lauterbach, L.; Saggu, M.; Hildebrandt, P.; Lendzian, F.; Bittl, R.; Lenz, O.; Zebger, I. “Probing the Active Site of an O2-Tolerant NAD+-Reducing [NiFe]-Hydrogenase from Ralstonia eutropha H16 by In Situ EPR and FTIR Spectroscopy” Angew. Chem. Int. Ed. 2010, 49, 8026–8029. https://doi.org/10.1002/anie.201002197


Horch, M.; Lenz, O.; Zebger, I. [NiFe] Hydrogenases. In Bioorganometallic Chemistry; Weigand, W., Apfel, U.-P., Eds.; De Gruyter: Berlin; 2020. https://doi.org/10.1515/9783110496574