2020
Stripp, S. T., Mebs, S., Haumann, M.
Temperature Dependence of Structural Dynamics at the Catalytic Cofactor of [FeFe]- hydrogenase
Inorg. Chem. 59 (22): 16474 – 88 (2020); doi.org/10.1021/acs.inorgchem.0c02316
Land, H., Sekretaryova, A. L., Huang, P., Redman, H. J., Németh, B., Polidori, N., Mészáros, L., Senger, M., Stripp, S. T., Berggren, G.
Characterization of a putative sensory [FeFe]-hydrogenase provides new insight into the role of the active site architecture
Chem. Sci. 2020; https://doi.org/10.1039/D0SC03319G
Németh, B., Senger, M., Redman, H. J., Ceccaldi, P., Broderick, J., Magnuson, A., Stripp, S. T., Haumann, M., Berggren, G.
[FeFe]-Hydrogenase Maturation: H-Cluster Assembly Intermediates Tracked by Electron Paramagnetic Resonance, Infrared, and X-Ray Absorption Spectroscopy
J. Biol. Inorg. Chem. 25: 777 – 88 (2020); doi.org/10.1007/s00775-020-01799-8
Land, H., Senger, M., Berggren G., Stripp, S. T.
Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations
ACS Catal. 10 (13): 7069 – 86 (2020); doi.org/10.1021/acscatal.0c01614
Ulrich, G., P!tzner, E. Hoehl, A. Liao, J-W., Zadvorna, O., Schweicher, G., Sirringhaus, H., Heberle, J., Kästner, B., Wunderlich, J., and Venkateshvaran, D.
Thermoelectric nanospectroscopy for the imaging of molecular fingerprints
Nanophotonics 9, 4347–4354 (2020); doi.org/10.1515/nanoph-2020-0316
Janda, T., Godinho, J., Ostatnicky, T., Pfitzner, E., Ulrich, G., Hoehl, A., Reimers, S., Šobáˇn, Z., Metzger, T., Reichlová, H., Novák, V., Campion, R. P., Heberle, J., Wadley, P., Edmonds, K. W., Amin, O. J., Chauhan, J. S., Dhesi, S. S., Maccherozzi, F., Otxoa, R. M., Roy, P. E., Olejník, K., Nˇemec, P., Jungwirth, T., Kaestner, B., and Wunderlich, J.
Magneto-Seebeck microscopy of domain switching in collinear antiferromagnet CuMnAs
Phys. Rev. Mat 4, 094413 (2020); doi.org/10.1103/PhysRevMaterials.4.094413
Hugentobler, K. G., Heinrich, D., Berg, J., Heberle, J., Brzezinski, P., Schlesinger, R. and Block, S.
Lipid Composition Affects the Efficiency in the Functional Reconstitution of the Cytochrome c Oxidase
Int. J. Mol. Sci., 21(19), 6981 (2020); doi.org/10.3390/ijms21196981
Pfitzner E, Heberle J.
Infrared Scattering-Type Scanning Near-Field Optical Microscopy of Biomembranes in Water.
J. Phys. Chem. Lett. 11, 8183−8188 (2020), doi: 10.1021/acs.jpclett.0c01769
Skopintsev, P., Ehrenberg, D., Weinert, T., James, D., Kar, R.K., Johnson, P.J.M., Ozerov, D., Furrer, A., Mous, S., Martiel, I., Dworkowski, F., Nass, K., Knopp, G., Cirelli,C., Gashi, D., Wranik, M., Gruhl, T., Kekilli, D., Brünle, S., Deupi, X., Schertler, G., Benoit, R., Panneels, V., Nogly, P., Schapiro, I., Milne,C., Heberle, J., Standfuss, J.
Femtosecond to millisecond structural changes in a light-driven sodium pump
Nature 583, 314–318 (2020), doi: 10.1038/s41586-020-2307-8
Harris A., Lazaratos M., Siemers M., Watt E., Hoang A., Tomida S., Schubert L., Saita M., Heberle J., Furutani Y., Kandori H., Bondar A.N., Brown L.S.
Mechanism of Inward Proton Transport in an Antarctic Microbial Rhodopsin
J Phys Chem B 124 (24), 4851-4872 (2020), doi: 10.1021/acs.jpcb.0c02767
Mészáros, L.S., Ceccaldi, P., Lorenzi, M., Redman, H.J., Pfitzner, E., Heberle, J., Senger, M., Stripp, S.T., Berggren, G.
Spectroscopic investigations under whole-cell conditions provide new insight into the metal hydride chemistry of [FeFe]-hydrogenase
Chem. Sci. 11, 4608-4617 (2020), doi: 10.1039/D0SC00512F
Kruse F., Nguyen A.D., Dragelj J., Schlesinger R., Heberle J., Mroginski M.A., Weidinger I.M.
Characterisation of the Cyanate Inhibited State of Cytochrome c Oxidase
Sci Rep. Mar 2;10(1):3863 (2020). doi: 10.1038/s41598-020-60801-0.