CRC 951 - Hybrid Inorganic/Organic Systems for Opto-Electronics (since 2011)
How can we combine significantly different classes of materials in hybrid inorganic/organic systems (HIOS) so that we realize substantially improved and potentially novel optoelectronic functionalities?
In the first phase, scientists investigated and comprehensively understood the fundamental chemical, electronic and photonic interactions in inorganic/organic hybrid systems. They discovered novel hybridized quantum states and coupled excitations at HIOS interfaces. Besides, the fundamental limit of the modern inorganic bulk semiconductors used so far was identified.
Currently, researchers are working to exploit the extremely high surface-to-volume ratio and strong light-matter interaction of atomically thin monolayers of transition metal dichalcogenides. They aim to determine the fundamental interactions and optoelectronic properties of these heterostructures to achieve maximum coupling and functionality.