Springe direkt zu Inhalt

SFB 658: Elementarprozesse in molekularen Schaltern an Oberflächen (2005-2017)

SFB 658

SFB 658

Der SFB hatte es sich zur Aufgabe gemacht, molekulare Schalter an Oberflächen zu verankern und dadurch neue Wege zur Kontrolle ihrer funktionellen Eigenschaften zu beschreiten. Eine zentrale Herausforderung bestand darin, dass die Schalteigenschaften durch die Oberfläche erheblich modifiziert werden bis hin zum Unterdrücken des Schaltvorgangs. Daher wurden Strategien entwickelt, die Kopplung der Schaltermoleküle an die Oberfläche zu optimieren. So wurden neue Schaltermoleküle mit verschiedenen Abstandshaltern synthetisiert, die es erlauben, die Wechselwirkung zwischen Molekül und Oberfläche in planarer oder vertikaler Adsorptionsgeometrie gezielt einzustellen. Durch die intensive Kooperation von Synthesechemie und Oberflächenphysik konnte eine Vielzahl von Schaltprozessen auf Oberflächen realisiert werden. Dazu gehören trans-cis-Isomerisierungs-, Tautomerisierungs- und Ringöffnung/Ringschluss-Schaltprozesse sowie das Schalten magnetischer Moleküle angekoppelt sowohl an Metall- und Halbleiteroberflächen, als auch an Graphen und Kohlenstoffnanoröhren.

Nach dem Überwinden nicht unerheblicher experimenteller Schwierigkeiten, ist das Schalten an Oberflächen heute Routine. So konnten die dem Schaltvorgang zu Grunde liegenden Elementarprozesse am Einzelmolekül und im Ensemble durch die intensive Zusammenarbeit von Experiment und Theorie im Detail analysiert und optimiert werden. Manipulation auf atomarer Ebene erlaubte spezifische Geometrien herzustellen, dabei Moleküle auf der Oberfläche zu stabilisieren und nicht nur vertikal, sondern auch lateral zu kontaktieren. Unter anderem gelang die Entwicklung eines Einzelmolekültransistors. Über Selbstorganisation wurden molekulare Schichten hergestellt, deren optische und elektrische Eigenschaften durch Licht extrem effektiv und ermüdungsarm geschaltet werden können. In Netzwerken molekularer Schalter wurde Verstärkung durch Kooperativität erzielt. Der Spinzustand magnetischer Moleküle konnte durch die Kopplung an das Substrat stabilisiert und geschaltet werden. Darüber hinaus konnten die physikalischchemischen Eigenschaften von Kohlenstoffnanoröhren wie Löslichkeit, Biokompatibilität, Lichtemission und Ladungsträgerdichte durch Schaltprozesse manipuliert werden.

Sprecher

Professor Dr. Martin Weinelt, seit 7/2015

Professor Dr. Felix von Oppen, bis 7/2015

Beteiligte Arbeitsgruppen

AG Fumagalli, AG Kuch, AG von Oppen, AG Weinelt, AG Groß, AG Pascual, AG Tegeder

Zahlen

  • rund 430 Publikationen
  • 85 abgeschlossene Promotionen
  • 5 strategische Berufungen
  • Wegberufung von 7 Teilprojektleitenden

Beteiligte

  • Freie Universität Berlin
  • Humboldt-Universität zu Berlin
  • Technische Universität Berlin
  • Universität potsdam
  • Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI)
  • Paul-Drude-Institut für Festkörperelektronik (PDI)

Zum SFB 658

For physicists affected by the war in Ukraine